首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2022-3»  

基于拉普拉斯正则化的药物副作用频率预测

王 林,李冰纯,徐显嵛

摘 要:药物风险-效益评价中的一个重要问题是确定药物副作用的频率.相较于通常的随机对照实验,基于机器学习预测药物副作用频率的方法具有时间短、准确率高的特点,并且可以用来指导对照实验.现有的计算方法很少考虑“相似的药物具有相似的副作用频率”这一特点,因此预测性能仍有待进一步提高.本文提出结合拉普拉斯正则化的非负矩阵分解方法,并引入超参数控制未知副作用标签及其预测值的间隔.计算实验表明,该方法可以有效预测药物的副作用频率,并且还可以预测上市后药物的副作用.



论文下载:
  • 10王林.pdf
  •   浏览次数:
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号