一种基于标签的电影组推荐方法
摘 要:现有的电影推荐系统大多是分析用户评分矩阵,没有考虑电影中的标签信息对推荐结果的影响,造成标签信息利用率较低.针对该问题提出一种基于标签的电影组推荐方法.通过改进的TF-IDF 方法得到用户–标签矩阵以及结合时间因素得到归一化的用户评分矩阵,分别计算用户相似度并融合,通过融合相似度进行群组划分.在此基础上计算组成员中电影标签的好评率,根据好评率设置张量初始总权重.根据近似张量值进行群组偏好融合,得到组推荐列表.在MovieLens 数据集上进行实验对比,结果表明本方法在准确率上有明显提高,召回率与F值有较大提高.
论文下载: