今天是 2025年4月6日 星期日
    首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2017-6»  

基于Single-Pass 的在线话题检测改进算法

马永军,刘 洋,李亚军,汪 睿

摘 要:现有话题检测的主要方法是利用Single-Pass 及其改进算法进行聚类分析,没有考虑文本的结构特点,相似度计算方法单一,从而影响准确度.针对此问题,改进了Single-Pass 的相似度计算方法,综合考虑文本的标题、摘要、时间、地名以及来源等要素,采用层次分析法计算并赋以不同权重,提出一种多相似度计算组合策略.考虑到食品安全是一个广受关注的话题,实验通过网络爬虫抓取并筛选了最近3 年食品安全方面的媒体信息,以此作为数据进行分析,结果表明,采用本文提出的改进Single-Pass 聚类算法,话题检测准确度更高.



论文下载:
  • 13.pdf
  •   浏览次数:39
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号