首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2008-1»  

基于人工神经网络的扬声器故障检测方法

王思俊,许增朴,于德敏,王永强

摘 要:提出了一种基于神经网络的扬声器故障检测方法.通过扫频仪激励扬声器,采集扬声器的响应信号,利用小波包分解的方法时频分析响应信号,得到各频段的能量;对分解后各频段信号的特征能量进行提取,规一化特征能量;把规一化后的特征能量作为人工神经网络的输入,通过BP 神经网络对扬声器故障进行分类识别.实验对165 个扬声器进行识别,识别率为95.8%.实验结果表明,该方法简便有效,具有实用价值.



论文下载:
  • 12.pdf
  •   浏览次数:
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号