首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2024-1»  

基于标签概念的多标签文本分类方法

汪乐乐,张贤坤

摘  要:多标签文本分类是自然语言处理中重要且具有挑战性的任务之一。现有的方法注重文本表示学习,关注文本内部信息预测所属标签,忽略了属于某一标签的全体实例中共享的关键信息。鉴于此,本文提出一种基于标签概念的多标签文本分类方法:利用词频和潜在狄利克雷分布(latent Dirichlet allocation,LDA)方法从训练集全体实例中抽取各标签所对应的关键词,接着采取与文本编码相同方式对关键词编码,获得标签概念表示。在训练和预测过程中,检索与文本表示最相似的标签概念辅助分类,增加标签概念表示与文本表示的对比损失,使文本编码过程中能充分学习全局的标签概念信息。将本文方法嵌套在常用的多标签文本分类模型上进行实验,结果表明该方法有效提高了相应模型的性能。



论文下载:
  • 10.pdf
  •   浏览次数:
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号