首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2023-3»  

一种基于用户信息映射的跨领域推荐算法

苑树强,史艳翠

摘 要:冷启动问题一直是推荐系统中的一大难点,而跨领域推荐可以通过迁移其他领域的信息缓解这个问题.本文提出一种基于用户信息映射的跨领域推荐算法,它可以在具有少量标记数据的情况下有效地学习跨域关系,并利用标签提高用户和物品编码的准确性.首先学习用户和物品的潜在向量,并改进降维方法将其处理成低维稠密向量;然后生成用户种群,利用偏好不同的用户种群训练映射函数,通过映射函数映射用户信息提高推荐效果.通过实验探究各个参数对实验结果的影响,验证了本文模型对重叠用户数量的依赖更低,相较于基准实验,有更好的推荐准确性,同时表明本文方法有更好的推荐效果.



论文下载:
  • 10.pdf
  •   浏览次数:
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号