基于LNBC 模型的中文命名实体识别
摘 要:针对中文命名实体识别中融合词典信息准确率提升不足的问题,使用在模型内部融合词典信息的策略,并结合预训练语言模型NEZHA 增强文本的嵌入表示,提出一种基于LNBC(LE-NEZHA-BiLSTM-CRF)模型的中文命名实体识别方法.首先通过词典树匹配所有潜在的词,然后采用面向中文理解的神经语境表征模型(NEZHA)进行融合嵌入表示,将训练得到的字词融合向量输入双向长短期记忆(BiLSTM)网络进行特征提取,获取长距离的语义信息,最后通过条件随机场(CRF)层降低错误标签输出的概率.实验结果表明,该方法在MSRA 数据集和Resume 数据集中的F1值分别为95.71%和96.11%,较其他对比模型均有提高.
论文下载: