首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2023-2»  

基于LNBC 模型的中文命名实体识别

马永军,王 野

摘 要:针对中文命名实体识别中融合词典信息准确率提升不足的问题,使用在模型内部融合词典信息的策略,并结合预训练语言模型NEZHA 增强文本的嵌入表示,提出一种基于LNBC(LE-NEZHA-BiLSTM-CRF)模型的中文命名实体识别方法.首先通过词典树匹配所有潜在的词,然后采用面向中文理解的神经语境表征模型(NEZHA)进行融合嵌入表示,将训练得到的字词融合向量输入双向长短期记忆(BiLSTM)网络进行特征提取,获取长距离的语义信息,最后通过条件随机场(CRF)层降低错误标签输出的概率.实验结果表明,该方法在MSRA 数据集和Resume 数据集中的F1值分别为95.71%和96.11%,较其他对比模型均有提高.    




论文下载:
  • 07.pdf
  •   浏览次数:
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号