首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2023-1»  

基于HSA 注意力模块和关联规则的行人属性识别算法

孙志伟,师亚涛,马永军,闫潇宁,许能华

摘 要:针对先前研究工作对行人属性相关性分析不足和行人图像中细粒度属性特征难以捕获的问题,首先基于关联规则寻找属性之间的相关性,然后根据相关性改变网络结构,提升有较强相关性属性的准确率并嵌入改进的HSA(hierarchy split attention)注意力模块,将特征图中的潜在信息进行深度挖掘.HSA 注意力模块将特征图进行分组和在子特征图之间增加通道交互操作,整合后的特征图输入挤压激励(squeeze and excitation,SE)模块中,提取图像在通道上的信息.在PA100K、Market-1501 和PETA 数据集上的实验结果表明,本算法的精确率、召回率、F1值与其他算法相当,但是准确率有较大提升.




论文下载:
  • 10.pdf
  •   浏览次数:
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号