首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2022-4»  

融合光照损失的图像超分辨率生成对抗网络

陈亚瑞,丁文强,徐肖阳,胡世凯,闫潇宁,许能华

摘 要:本文针对在低光照条件下图像分辨率低的问题,提出一种融合光照损失的图像超分辨率生成对抗网络(image super-resolution generative adversarial network based on light loss,LSRGAN)模型.该模型通过构建高分辨率低分辨率图像对,利用生成器网络、判别器网络进行训练,实现低光照条件下更好的模型生成图像效果.该模型的损失函数包括光照损失、结构相似性损失、内容损失和对抗损失.模型通过构建光照损失函数,利用RGB 三原色颜色空间与YIQ 颜色空间的线性关系计算出图像中的亮度分量,将图像中的亮度作为损失函数,更好地恢复低光照条件下的低分辨率图像;通过增加结构相似性损失,计算超分辨率图像与真实高分辨率图像之间的结构相似性,提高生成图像的质量;内容损失区别于传统的基于像素的损失,使用VGG19 网络中的特征映射进行计算,可以得到更逼真的生成图像;对抗损失使用判别器网络区分超分辨率图像与真实高分辨率图像,提高超分辨率图像的视觉效果.通过在4 个标准数据集Set5、Set14、BSDS100 和Urban100 上设计对比实验,证明通过增加对光照更加敏感的损失函数,使该模型在低光照条件下具有更好的模型生成图像效果;同时通过增加结构相似性损失,使生成的图像视觉质量更好.




论文下载:
  • 09陈亚瑞.pdf
  •   浏览次数:
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号