一种基于反向学习和伯恩斯坦算子的差分进化算法
摘 要:差分进化(differential evolution,DE)算法是一种种群随机搜索算法,但其在收敛过程中存在着容易陷入局部最优、收敛精度不高等问题.为更好地提升DE 算法的性能,提出一种改进算法为基于反向学习和伯恩斯坦算子的差分进化算法.反向学习策略用于增加种群的多样性,扩大种群的搜索范围,从而弥补陷入局部最优的不足,提高了收敛速度;伯恩斯坦多项式随机产生算法的结构参数值控制了进化过程中的突变和交叉阶段,改变了差分进化算法原有的进化策略,提高了收敛性能,是一种更加快速、高效的无参数方法.通过国际标准测试函数的实验结果表明,改进后的差分进化算法具有更强的全局寻优能力,整体收敛速度和精度明显提高.
论文下载: