首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2021-6»  

基于K-means 的改进协同过滤算法

吴婷婷,李孝忠,刘徐洲

摘 要:协同过滤算法在推荐系统中得到了广泛的应用,但是随着数据的不断增长,用户相似度低、推荐准确性不高等问题也逐渐显现.针对上述问题,提出一种基于K-means 的改进协同过滤算法.首先,通过K-means 聚类算法将相似的用户进行聚类,在聚类过程中,利用欧几里得公式计算数据之间的距离,该算法得到聚类效果最好的簇数K;其次,将K 值作为二分K-means 算法的输入,通过该聚类算法得到最终的聚类结果;再次,通过改进之后的相似度公式得到目标用户的邻居用户集合;最后,通过预测评分公式预测项目的分值.实验表明,该算法在准确率、召回率以及F1指标上都有一定程度的提高.




论文下载:
  • 07.pdf
  •   浏览次数:
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号