首页    |     本刊简介    |     征稿简则    |     征订启事    |     联系我们    |
天津科技大学学报欢迎您投稿!
 
   采编平台 /// 
 
    • 作者投稿  
    • 专家审稿  
    • 编辑办公  
 
   
 
   期刊论文 /// 
 
    • 全文浏览  
    • 论文检索  
    • 浏览排行  
 
   
 
   下载中心 /// 
 
    • 论文模板
    • 在研证明模板
    • 平台使用说明
 
   
 
 您现在的位置: 首页» 学报论文» 2021-5»  

融合用户偏好和信任关系的混合群组餐厅推荐

史艳翠,齐嘉琳

摘 要:在推荐系统领域,群组推荐可以有效解决传统个性化推荐存在的仅对单用户推荐、数据稀疏、计算量大等问题,已成为该领域研究的热点.在传统的推荐算法中,仅使用用户的评分数据,没有考虑用户的信任关系.本文提出的算法通过引用用户偏好模型,获取用户-餐厅偏好评分矩阵,代替原始的用户-餐厅评分矩阵,降低了数据的稀疏性;在计算用户信任度时,从公平性、准确性、影响力考虑了不同因素对用户信任度的影响;通过K-means 算法对同城的用户进行聚类,使用改进的比重偏好融合策略预测群组偏好进行推荐.通过实验可知,该方法有更好的推荐结果.




论文下载:
  • 11.pdf
  •   浏览次数:
     
     

    版权所有:《天津科技大学学报》编辑部

    网站设计与维护:天津科技大学信息化建设与管理办公室

    津科备27-1号