基于YOLOv3 的轻量化高精度多目标检测模型
摘 要:针对当前目标检测模型在边缘设备中的应用占用内存过大、无法达到实时性要求的问题,提出一种基于YOLOv3 的轻量化多目标检测模型.采用MobileNet 网络进行点卷积和深度可分离卷积运算提取图像特征,显著降低了模型的参数量.同时,为了保证目标检测精度,在训练过程中不仅采用CIOU(complete intersection over union)目标框回归损失函数,而且在损失函数中引入Focal loss,减少正负样本分布不平衡所造成的误差;引入Label Smoothing调整真实样本标签类别在计算损失函数时的权重,有效抑制过拟合问题.经3.5 万个实际场景数据训练,本文提出的改进模型在行人和车辆的检测精度上分别达到47.3%和69.67%,模型大小仅为YOLOv3 的40%,实现了理想检测精度水平下的模型轻量化.
论文下载: