基于支持向量机的非特定人孤立数字语音识别
摘 要:为了识别一组非特定人、不连续的数字语音信号,本文提出了一种基于支持向量机理论的语音信号识别算法.具体过程主要包括训练过程和识别过程.其中训练过程为:先使用预先建立起来的语音库对选定的支持向量机进行训练,得到一组与该语音信号相关的支持向量;在识别过程中,首先获取被测语音信号,并根据MFFC 理论提取特征向量,然后使用训练后的支持向量机进行识别.此外,还提出使用短时区域能量谱的方法对语音信号进行端点检测.结果表明,与目前流行的隐马尔可夫算法比较,本文算法具有识别速度快、准确率高等优点.
论文下载: