

天津科技大学学报 Journal of Tianjin University of Science & Technology ISSN 1672-6510,CN 12-1355/N

《天津科技大学学报》网络首发论文

题目:	基于 MIL-101(Cr)/荧光适配体的 NoV 高灵敏检测方法			
作者:	崔涵,马雨靓,林嘉琦,任舒悦,刘冰,高志贤			
DOI:	10.13364/j.issn.1672-6510.20240139			
收稿日期:	2024-07-03			
网络首发日期:	2025-01-14			
引用格式:	崔涵,马雨靓,林嘉琦,任舒悦,刘冰,高志贤.基于 MIL-101(Cr)/荧光适配			
	体的 NoV 高灵敏检测方法[J/OL]. 天津科技大学学报.			
	https://doi.org/10.13364/j.issn.1672-6510.20240139			

www.cnki.net

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶 段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期 刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出 版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出 版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编 辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、 出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。 为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容, 只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国 学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷 出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出 版广电总局批准的网络连续型出版物(ISSN 2096-4188, CN 11-6037/Z),所以签约期刊的网络版上网络首 发论文视为正式出版。 关注科技大学学报 Journal of Tianjin University of Science and Technology

DOI: 10.13364/j.issn.1672-6510.20240139

2025年

基于 MIL-101(Cr)/荧光适配体的 NoV 高灵敏检测方法

崔 涵^{1,2},马雨靓^{1,2},林嘉琦²,任舒悦²,刘 冰¹,高志贤²
 (1.天津科技大学食品科学与工程学院,天津 300457;
 2.军事科学院军事医学研究院环境医学与作业医学研究所,天津 300050)

摘 要:诺如病毒(NoV)是引起食源性疾病的主要原因之一,它能够导致急性肠胃炎,引起严重的腹泻。目前常用的几种 NoV 检测方法存在一些问题,如灵敏度低、操作复杂、设备成本高以及检测时间长等缺陷。因此,亟需 开发出一种快速、灵敏且操作便捷的 NoV 检测方法。本研究采用了特异性识别 NoV 衣壳蛋白 VP1 的适配体与金属 有机骨架相结合的方法,构建了基于荧光检测的高灵敏度传感器,该传感器具备了检测的特异性、高灵敏度和良好 的稳定性,最低检测限为 0.075 ng/mL。本研究检测方法快速、灵敏、便捷,为即时检测提供了可靠的技术支持。 关键词: NoV; 衣壳蛋白 VP1; 金属有机骨架; 荧光传感; 适配体 中图分类号: R155.5⁺⁵ 文献标志码: A 文章编号: 1672-6510 (0000)00-0000-00

Development of a Highly Sensitive Detection Method of Norovirus Based on

MIL-101 (Cr) /Fluorescent Aptamer

CUI Han^{1,2}, MA Yujing^{1,2}, LIN Jiaqi², REN Shuyue², LIU Bing¹, GAO Zhixian²

(1. College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;

2. Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China)

Abstract: Norovirus (NoV) is the leading cause of foodborne illness that can induce acute gastroenteritis and severe diarrhea. Current methods for the diagnosis of NoV have some drawbacks, such as low sensitivity, complex operations, high equipment costs, and prolonged detection times. Thus, there is an urgent need for a rapid, more sensitive, and user-friendly method for NoV diagnosis. This study developed a highly sensitive fluorescence-based sensor by combining aptamers, which can specifically recognize the NoV capsid protein VP1, with metal-organic frameworks. This sensor was specific, highly sensitive, stable, and had a detection limit as low as 0.075 ng/mL. This study will hopefully provide reliable technical support for point-of-care testing.

Key words: norovirus; capsid protein VP1; metal-organic framework; fluorescence sensing; aptamer

诺如病毒(norovirus, NoV)属于杯状病毒 科,具有遗传性和抗原多样性。诺如病毒可以分为 10个主要的基因组,每个基因组又分为许多基因 型,其中 GII.4 是大多数人类感染的类型^[1]。NoV 具有感染剂量低、发病时间快、传播能力强等特 点,这给检测工作带来了极大的困难^[2-3]。随着各类 检测技术与方法的快速发展,多种 NoV 的检测方法 应运而生^[4],可以实现对 NoV 的定量或定性检测。 目前,NoV 的检测技术手段主要包括分子生物学方 法、免疫学方法、生物传感方法^[5]。其中,逆转录-聚合酶链式反应(RT-PCR)是一种被广泛应用的 方法,可以快速、敏感、特异地检测 NoV,因此被 视为 NoV 检测的"金标准"。但是,这种方法存在 检测程序复杂、检测时间长、受限于专业的实验室

收稿日期: 2024-07-03; 修回日期: 2024-10-09

基金项目: 军事医学研究院青年人才基金(AMMS-QNPY-2021-007)

作者简介: 崔涵(2000-), 女, 辽宁朝阳人, 硕士研究生; 通讯作者: 高志贤, 教授, gaozhx@163. com

条件和设备昂贵等问题[6]。

适配体是一种能够特异性识别靶标的核糖核酸 (ribonucleic acid, RNA)、单链脱氧核糖核酸 (single-stranded DNA, ssDNA) 或多肽分子 (peptide, Pep), 具有特异的三维结构, 可以区分 分子结构的细微差异,以显著的亲和力和特异性结 合靶标^[7-8]。在过去的三十年中,适配体的使用已经 从检测小分子[9]发展到检测复杂的生物实体,包括 病毒[10-11]和癌细胞[12]等。与抗体相比,核酸适配体 具有制备简单、重现性好、特异性高、性质稳定等 优点,因此在小分子的快速分析领域具有广阔的应 用前景。核酸适配体由于克服了抗体合成周期长、 容易变性等弱点而被广泛认为是抗体的替代品[13]。 这一技术的发展极大地促进了生物分析、生物传感 等领域的科技进步。在大多数情况下,为了获得特 异性和可靠的结合反应,适配体通常需要与生物传 感器结合[14-15]。一般而言,生物分子的固定化或修 饰过程包括多个孵育反应、封闭步骤和复杂的操 作,固定效率不高,可能会降低检测性能,因此研 发一种简便且无需适配体固定化的荧光传感方法对 于检测分析至关重要。

金属有机骨架(metal-organic framework, MOF)是一种金属离子/团簇和有机配体自组装而成 的多孔材料,具有比表面积高、孔体积大、孔径均 匀等优点^[16-17]。MOFs 均一的晶体结构、较大的比 表面积、可变的孔径可以允许广泛的核酸适配体黏 附在表面或孔内^[18-19]。此外,MOF 还可以通过光诱 导电子转移(PET)和荧光共振能量转移(FRET) 机制实现荧光基团的猝灭。近年来,基于 MOF 的 适配体传感器已被广泛应用,如气体存储^[20]、气体 吸附^[21]、分离^[22-23]和环境污染监测^[24]等。由于 MOF 具有成本低、简便操作、制备条件温和、周期 短等优点,在适配体传感器构件中具有广阔的应用 前景。

因此,本研究将适配体与 MOF 材料结合,构 建新型荧光适配体传感器,进行 NoV 衣壳蛋白的高 灵敏度检测,旨在为食品中 NoV 污染的快速检测提 供技术支持。

1 材料与方法

1.1 材料

九水硝酸铬(≥99.95%)、对苯二甲酸(≥99. 9%)、冰乙酸(分析纯)、乙醇(≥99.9%),阿拉 丁生化试剂有限公司;N,N-二甲基甲酰胺(DM F)、Tris-HCl缓冲液,北京索莱宝科技有限公司; NoV 衣壳蛋白 VP1,山东蓝都生物科技有限公司。 所有材料按原样使用,未进一步纯化。VP1 适配体 序列参考 Escudero-Abarca 等^[25]的方法进行设计, 由生工生物工程(上海)股份有限公司合成,序列为 5'-Cy3CCATGTTTTGTAGGTGTAATAGGTCATGT TAGGGTTTCTG-3'(Cy3-aptamer)。超纯水通过 Millipore-Milli-Q系统制备。

50 mL 四氟乙烯反应釜内衬,上海化科实验器 材有限公司:F-7000 型荧光分光光度计,瑞士梅特 勒-托多利仪器有限公司:Sigma 500 型场发射扫描 电子显微镜(FESEM),德国卡尔蔡司公司:TU-1901 型双光束紫外-可见分光光度计,上海元析仪 器有限公司:Tecnai G2 F20 型场发射透射电镜 (FETEM),荷兰皇家飞利浦公司:DH-101-0BY 型电热真空干燥箱、SB25-12D 型超声波清洗机, 广州晟龙实验仪器有限公司。

1.2 实验方法

1.2.1 水热法合成 MIL-101 (Cr)

参考 F érey 等^[26]的方法并略有修改。首先取 2.1 g 九水硝酸铬和 0.82 g 对苯二甲酸溶解在超纯水 中,再加入 1.6 mL 冰乙酸充分搅拌,随后移入反应 釜,200 ℃持续反应 8 h。反应完毕后收集浅绿色的 产物,依次用 DMF 和热乙醇洗涤 3 次,随后在乙 醇中超声分散 1 h,直至离心后上清液呈透明,此 时收集离心后的沉淀,150 ℃干燥 12 h,最终得到 浅绿色的固体材料,即为 MIL-101 (Cr)。

1.2.2 适配体的选择

目前已知的 NoV 蛋白适配体数量有限,在已知 的适配体中选择 3 种使用率较高的适配体序列^[25], 通过圆二色谱分析,选择构象变化相对明显的适配 体用于后续实验。

1.2.3 建立 VP1 蛋白的荧光传感方法

制备 10 μmol/L Cy3-aptamer 溶液和 0.25 mg/mL MIL-101 (Cr) 悬浮液,分别吸取 100 μL 加入离心 管中混合,涡旋振荡混匀,37 ℃避光振荡反应 5 min; 在离心管中分别加入一系列浓度梯度 (0.5~100 ng/mL) 的 VP1蛋白 100 μL,涡旋振荡混 匀,37 ℃避光振荡反应 40 min;最后,测定溶液的 荧光强度。ng/mL 与拷贝数/μL 的换算关系:相对 分子质量为 1 的蛋白质为 1 g/mol。

1.2.4 优化检测条件

激发波长的优化:取 200 µL 1 µmol/L 的 Cy3aptamer 溶液加入离心管中,共制备 5 组,每组 3 个 平行;分别在激发波长 510、515、520、525、530 nm 处测定溶液的荧光强度。

猝灭时间的优化:取制备好的等量 Cy3-aptamer 溶液于 MIL-101 (Cr) 悬浮液充分涡旋振荡混匀, 置于离心管中,共制备 8 组,每组 3 个平行;在 37 ℃条件下避光振荡,分别反应 0、1、2、3、4、 5、6、7 min;测定溶液的荧光强度。

反应时间的优化:取制备好的等量 Cy3-aptamer 溶液及 MIL-101 (Cr) 悬浮液充分涡旋振荡混匀, 置于离心管中,共制备 7 组,每组 3 个平行,37 ℃ 避光振荡反应 5 min。随后向各个离心管中加入 100 µL VP1 蛋白 (0.2 µg/mL),再次涡旋振荡混匀, 37 ℃避光振荡,分别反应 0、10、20、30、40、 50、60 min;测定溶液的荧光强度。

反应温度的优化:取制备好的等量 Cy3-aptamer 溶液与 MIL-101 (Cr) 悬浮液充分涡旋振荡混匀, 置于离心管中,共制备 7 组,每组 3 个平行,37 ℃ 避光振荡反应 5 min。随后向各个离心管中加入 100 µL VP1 蛋白 (0.2 µg/mL),再次涡旋振荡混匀, 分别在 25、28、31、34、37、40 ℃条件下避光振 荡反应 40 min;测定溶液的荧光强度。

缓冲液 pH 的优化: 配制 0.25 mg/mL MIL-101 (Cr) 悬浮液,分别分散于不同 pH (6.1、6.7、 7.3、7.9、8.5、9.1)的 Tris-HCl 缓冲液中。取制备 好的等量 Cy3-aptamer 溶液与不同 pH 的 MIL-101 (Cr) 悬浮液充分涡旋振荡混匀,置于离心管中, 共制备 6组,每组 3 个平行,37 ℃避光振荡反应 5 min。随后向各个离心管中加入 100 μL VP1 蛋白 (0.2 μg/mL)并再次涡旋振荡均匀,37 ℃避光振荡 反应 40 min;测定溶液的荧光强度。

缓冲液种类的优化:分别在 Tris-HCl、TE、 PBS、HEPES 缓冲液中配制 0.25 mg/mL MIL-101 (Cr) 悬浮液。吸取 100 μL Cy3-aptamer (10 μmol/L)加入离心管,分别加入等体积的不同缓冲 液 MIL-101 (Cr) 悬浮液 (0.25 mg/mL),共制备 4 组,每组 3 个平行, 37 ℃避光振荡反应 5 min。 随后向各个离心管中加入 100 μL VP1 蛋白 (0.2 μg/mL)并再次涡旋振荡均匀, 37 ℃避光振荡反应 40 min;测定溶液的荧光强度。

1.2.5 特异性实验

将 100 µL Cy3-aptamer (10 µmol/L) 加入离心

管,加入等体积的 MIL-101 (Cr) 悬浮液 (0.25 mg/mL)并充分涡旋混匀,共制备9组,37℃避光 振荡反应 5 min。随后向各个离心管中分别加入 VP1 蛋白、新型冠状病毒蛋白、寨卡病毒蛋白、轮 状病毒蛋白、牛血清蛋白、葡萄糖、蔗糖、Na²⁺、 K⁺,37 ℃避光振荡反应 40 min;测定溶液的荧光强 度。

1.2.6 加标回收实验

牡蛎从天津当地的超市购买。取消化腺 2.0 g, 匀浆,加入 2 mL PBS 溶液,加入 10 μL 蛋白酶 K 溶液(20 mg/mL),混匀消化; 37 ℃、320 r/min 振荡 60 min, 60 ℃恒温水浴 15 min;最后,3000 r/min 离心 5 min,转移上清液。用核酸提取试剂盒 进行病毒裂解、核酸提取等步骤。取阴性样本经上 述步骤处理后,添加终质量浓度为 5、20、50 ng/mL 的 VP1蛋白进行加标测试。

1.3 数据处理

采用 Origin 8.5 进行数据处理、分析和绘图。

2 结果与分析

2.1 MIL-101 (Cr) /荧光适配体传感器的检测原理

采用 Cy3-aptamer 作为生物识别元件,以 MIL-101 (Cr)为基底材料构建 MIL-101 (Cr)/荧光适 配体生物传感器。MIL-101 (Cr)具有独特的荧光 猝灭能力,可以通过氢键、π-π 键以及静电等相互 作用吸附 Cy3-aptamer,导致 Cy3 荧光通过光诱导 电子转移(PET)和荧光共振能量转移 (FRET)机制 猝灭,这种作用是可逆的^[27]。通过简单的预孵育形 成 MIL-101 (Cr)/荧光适配体传感平台。在 VP1 靶 标存在的情况下,Cy3-aptamer 特异性结合 VP1,导 致 Cy3-aptamer-VP1 复合物从 MIL-101 (Cr)表面 释放出来。Cy3-aptamer 和 MIL-101 (Cr)表面

图 1 MIL-101 (Cr)/荧光适配体传感器的检测原理

Fig. 1 Schematic of the detection of the MIL-101 (Cr) / fluorescent aptamer sensor

2.2 MIL-101 的表征

MIL-101 的表征结果如图 2 所示。MIL-101
(Cr)呈八面体构型。EDS 能谱分析结果与文献一致^[26]。样品晶体颗粒大小均匀,平均粒径为
(0.27±0.03)μm,表明MIL-101 (Cr)成功合成。
傅里叶变换红外光谱在 3429 cm⁻¹处记录的宽峰

归为 O-H 的伸缩振动; 1394 和 1640 cm⁻¹ 处的吸 收峰为一(O-C-O)一的特征峰, 749 cm⁻¹ 和 1017 cm⁻¹ 处的吸收峰是由骨架中苯环振动引起的 ^[26],证实了 MIL-101 (Cr)中存在对苯二甲酸配 体,进一步表明材料合成成功。

(a) 扫描电子显微镜图; (b) 透射电镜图; (c) EDS 能谱分析图; (d) 粒径分析图; (e) 傅里叶变换红外光谱图 图 2 MIL-101 (Cr) 的表征
 Fig. 2 Characterization of MIL-101 (Cr)

2.3 适配体的选择

选择 NoV 常见的 3 种 VP1 蛋白适配体进行与 所用目标物的亲和力分析,圆二色谱分析适配体与 VP1 蛋白的结合如图 3 所示。圆二色谱(circular dichroism, CD)常用于探究蛋白质和核酸等分子的 立体结构,利用 CD 光谱分析适配体与目标物结合 前后的偏振光吸收变化,可以反应适配体与 VP1 蛋 白的亲和力程度^[28]。正负峰的数量和强度代表了分 子的二级结构特征。由图 3 可知, S19-aptamer、 S21-aptamer、M6-2-aptamer 与 VP1 结合后的圆二色 性在 200~300 nm 波长范围内呈现出不同程度的变 化,证明了其构象的改变。考虑到 M6-2 适配体在 240 nm 处的偏振光吸收几乎没有变化,可能意味着 构象的不完全变化。因此,初步选择整体偏振光吸 收变化值较大的 S21 适配体用于后续实验核酸序列 分析。

图 3 圆二色谱分析适配体与 VP1 蛋白的结合 Fig. 3 Circular dichroism analysis of aptamer binding with VP1 protein

2.4 MIL-101(Cr)/荧光适配体传感器的可行性分析

MIL-101 (Cr)/荧光适配体传感器的可行性分析结果如图 4 所示。Cy3-aptamer 的荧光发射光谱与 MIL-101 (Cr)的吸收光谱重叠,表明两者在一定 条件下存在 FRET 现象。研究^[29-30]表明,MIL-101 中 Cr (III)金属离子与 Cy3 染料之间存在 PET 过 程。由图 4 (b)可知,单独的 Cy3-aptamer 显示出 最强的荧光信号。当 MIL-101 (Cr)与 Cy3-aptamer 一起孵育时,由于两者间的氢键、静电作用、π-π 堆叠等相互作用,导致 Cy3-aptamer 被吸附和限制 在 MIL-101 (Cr)上,从而引起荧光猝灭。这种荧 光猝灭是通过 FRET 和 PET 联合产生的,导致荧光 强度迅速下降。然而,当在该孵育体系中加入 VP1 时,原本被猝灭的荧光信号出现明显的恢复。这是 由于 Cy3-aptamer 与 VP1 竞争性结合,导致它从 MIL-101 (Cr)材料上释放出来,进而阻碍 PET 和 FRET 过程的发生。此外,对照组的结果表明 Cy3aptamer 与 VP1 结合对于荧光的影响可以忽略不 计。VP1 能够竞争结合 S21 适配体,表明两者具有 良好的亲和力。

 (a) MIL-101(Cr)的荧光激发和发射光谱; (b) VP1 与 Cy3-aptamer/MIL-101(Cr)竞争反应 图 4 MIL-101(Cr)/荧光适配体传感器的可行性分析
 Fig. 4 Feasibility analysis of MIL-101(Cr)/fluorescent aptamer sensor

2.5 检测条件的优化

为了构建 MIL-101 (Cr)/荧光适配体传感平台,对可能影响检测结果的条件进行优化(图5),以实现对 VP1蛋白的高灵敏检测。

不同激发波长对检测结果的影响表明,在 510~530 nm 范围内,随着激发波长的增大,荧光强 度呈现出先上升后下降的趋势,在 525 nm 激发波 长处达到最大值。因此,选择 525 nm 作为后续实 验荧光检测的最佳激发波长。

由图 5(b)可知,随着 Cy3-aptamer 与 MIL-101(Cr)结合反应的进行,体系内荧光强度逐渐 减弱,反应时间为 5 min 时,荧光强度降至最低, 并且再未发生明显变化。因此,选择 5 min 作为后 续实验的猝灭时间。

由图 5(c)可知,随着 Cy3-aptamer/MOFs 与 VP1 蛋白结合反应的进行,体系的荧光强度逐渐升

高,在反应时间为 40 min 时,荧光强度最大,并且 不再发生明显改变。因此,选择 40 min 作为后续实 验的反应时间。

由图 5 (d) 可知,在 25~37 ℃范围内荧光强度 随着反应体系温度的升高而增大,37 ℃时达到最大 值;随着温度继续升高,荧光强度有所下降。因 此,反应温度设置为 37 ℃。

由图 5(e)可知,随着 pH 从 6.1 增大至 9.1 范时,荧光强度出现先上升后下降的趋势,在缓冲液体系 pH=7.3 时,荧光强度达到最大值。因此,后续实验选择 7.3 作为检测缓冲液体系的最适 pH。

由图 5 (f)可知,缓冲液的种类对传感器性能的影响并不显著,但使用 Tris-HCl 缓冲液时得到了最佳的结果,因此选择 Tris-HCl 缓冲液用于后续实验。

(a) 激发波长优化图; (b) 荧光猝灭时间优化; (c) 竞争反应时间优化; (d) 反应温度优化; (e) pH 优化; (f) 缓冲液的选择 图 5 MIL-101 (Cr) /荧光适配体传感器检测条件优化

Fig. 5 Optimization of detection conditions for MIL-101 (Cr) /fluorescent aptamer sensor

2.6 MIL-101(Cr)/荧光适配体传感器检测性能评价及方法学对比

在最优实验条件下,采用 MIL-101 (Cr) 荧光 适配体传感器对 VP1 蛋白进行检测,评估该传感器 的检测性能,结果如图 6 所示。由图 6(a)可知,荧 光强度随着 VP1 蛋白浓度的增加呈现逐渐增加的趋 势,表明 VP1 蛋白浓度与荧光恢复强度之间存在良 好的线性相关性。因此,可以通过确定荧光信号的 恢复情况和所添加 VP1 蛋白的浓度之间的关联,实现对 VP1 蛋白的定量检测。线性方程为 y=2364.1016logx+2753.6514(图 6 b),检测限 (LOD)为7.5×10⁻² ng/mL(6×10² 拷贝/ μ L)。该结 果略高于 RT-qPCR 方法得到的10 拷贝/ μ L,具有较 好的灵敏度。与现有传感方法相比,本研究方法用 时更短,操作更简单,过程中的干扰因素少,且不 需要复杂的设备仪器且灵敏度高(表1)。

(a) 荧光光谱图; (b) 标准曲线; (c) 基于 RT-qPCR 的 NoV 检测图 6 MIL-101 (Cr) /荧光适配体传感器检测性能评价及方法学对比

Fig. 6 Evaluation of detection performance and methodological comparison for MIL-101 (Cr) /fluorescent aptamer sensor 表 1 本研究方法与现有 NoV 检测方法的比较

Tab. 1	Comparison	of the proposed	method with	recently estab	blished	assays	for No	V detection
--------	------------	-----------------	-------------	----------------	---------	--------	--------	-------------

	方法	检测时间/min	检测目标	检测限	参考文献
牛枷仕武鬼士	PEC生物传感器	30 G	II.12 衣壳蛋白 VP1	4.9 pM	[31]
生物传感希拉木	亲和肽、引导等离子体生物传感器	10	衣壳蛋白 VP1	> 9.9 拷贝/mL	[32]
分子生物学技术	常规 RT-PCR	120	GI、GII型 NoV	1×10 ³ 拷贝/µL	[33]
	环介导等温扩增(LAMP)	12~30	GII型 NoV	10拷贝/µL	[34]
免疫学技术	胶体金免疫层析	10	GII.4型 NoV	5.9×10 ⁵ 拷贝/µL	[35]
本研究方法	MIL-101(Cr)/荧光适配体传感器	45	衣壳蛋白 VP1	6×10 ² 拷贝/µL	

2.7 MIL-101(Cr)/荧光适配体传感器特异性评价

实验中还选择了比较常见的其他 4 种致病病毒的抗原蛋白,如新型冠状病毒(SARS-CoV-2)、轮状病毒(Rotavirus)、寨卡病毒(Zika),以及 5 种常见的干扰物,如牛血清蛋白(Bovine Albumin, BSA)、蔗糖(Sucrose, Suc)、葡萄糖(Glucose, Glc)、Na⁺、K⁺,验证用于检测 VP1蛋白的荧光传感器的特异性,结果如图 7 所示。由图 7 可知,只有添加了 VP1蛋白,荧光强度才能明显恢复,添加其他物质后,仅发生了少量的荧光恢复,表明该荧光传感器具有良好的特异性。

Fig. 7 Specificity evaluation of the MIL-101 (Cr) /fluorescent aptamer sensor

2.8 加标回收实验

以当地市场采购的牡蛎为实际样品,验证该检测方法在实际样品中的应用效果。通过对实际样品的检测,进一步验证了该方法的适用性和准确性,为该检测方法的实际应用提供数据支撑。牡蛎样品中的 NoV 衣壳蛋白的加标回收实验结果显示见表2。牡蛎的回收率为 94.48%~104.62%(RSD 范围为0.9%~2.8%)。因此,可以证明本研究方法检测真实样品中 VP1 蛋白的灵敏度和准确性。

表 2 牡蛎样品中的 NoV 衣壳蛋白的加标回收实验

Tab. 2 Spiked recovery experiments for norovirus capsid

proteins in oyster samples

样品	加标量 /(ng mL ⁻¹)	回收量 /(ng mL ⁻¹)	回收率/%	相对标准 偏差/%
	5	5.231	104.62	0.9
牡蛎	20	19.578	97.89	2.8
	50	47.239	94.48	1.6

3 结 论

在本研究中,以 VP1 适配体为标靶识别元件, 利用 MIL-101 (Cr)的高效吸附和猝灭荧光能力, 建立一种 MIL-101 (Cr)/荧光适配体生物传感方 法。该方法可以灵敏地检测 0.5~100 ng/mL 的 VP1 蛋白,检测限低至 0.075 ng/mL,并在牡蛎实际样品 中 NoV 衣壳蛋白 VP1 的检测分析中展现了良好的 性能,有望应用于现场样品的实际检测。未来将研 究利用核酸适配体工程进一步提高灵敏度,通过不 同修饰策略构建多通道荧光适配体传感芯片,结合 机器学习模式化的交互实现多重识别。

参考文献:

- DEPAOLA A, JONES J L, WOODS J, et al. Bacterial and viral pathogens in live oysters: 2007 United States market survey[J]. Applied and environmental microbiology, 2010, 76(9): 2754-2768.
- [2] 韦罗娜,张义,曹磊,等.一起高校 NoV 感染引起的暴发 疫情调查[J]. 医学动物防制, 2021, 37(8): 781-784.
- [3] 孙志强, 黄志成, 王修, 等. NoV 检测技术的研究进展[J]. 中国实验诊断学, 2020, 24(10): 1750-1752.
- [4] 潘卫兵,许韡. NoV 检测技术研究[J]. 医学信息, 2018, 31(2): 51-53.
- [5] 杨艳歌, 吴占文, 李涛, 等. NoV 快速检测技术研究进展[J].中国食品卫生杂志, 2023, 35(1): 131-136.
- [6] LEKSHMI M, KUMAR S H, RAJENDRAN K V, et al. Development of a reverse transcription(RT) polymerase chain reaction(PCR) method for the detection of human norovirus in bivalve molluscs[J]. Water science and technology, 2021, 83(5): 1103-1107.
- [7] MCKEAGUE M, DEROSA M C. Challenges and opportunities for small molecule aptamer development[J]. Journal of nucleic acids, 2012, 2012: 748913.
- [8] CHO H, YEH E C, SINHA R, et al. Single-step nanoplasmonic VEGF165 aptasensor for early cancer diagnosis[J]. ACS Nano, 2012, 6(9): 7607-7614.
- [9] ZHENG X, GAO S, GAO S, et al. Recent advances in aptamer-based biosensors for detection of pseudomonas aeruginosa[J]. Frontiers in microbiology, 2020, 22(11): 605229.
- [10] NEGRI P, KAGE A, NITSCHE A, et al. Detection of viral nucleoprotein binding to anti-influenza aptamers via SERS[J]. Chemical communications, 2011, 47(30): 8635-8637.
- [11] LABIB M, ZAMAY A S, MUHAREMAGIC D, et al. Aptamer-based viability impedimetric sensor for viruses[J]. Analytical chemistry, 2012, 84(4): 1813-1816.
- [12] KIM Y J, LEE H S, JUNG D E, et al. The DNA aptamer

binds stemness-enriched cancer cells in pancreatic cancer[J]. Journal of molecular recognition, 2017, 30(4): e2591.

- [13] HAN K, LIANG Z, ZHOU N. Design strategies for aptamer-based biosensors[J]. Sensors, 2010, 10(5): 4541-4557.
- [14] LUO X, ZHAO X, WALLACE G Q, et al. Multiplexed SERS detection of microcystins with aptamer-driven coresatellite assemblies[J]. ACS Applied materials & interfaces, 2021, 13(5): 6545-6556.
- [15] YANG W, ZHANG G, NI J, et al. From signal amplification to restrained background: magnetic graphene oxide assisted homogeneous electrochemiluminescence aptasensor for highly sensitive detection of okadaic acid[J]. Sensors and actuators B, chemical, 2021, 327: 128872.
- [16] HAO J N, LI Y. Concurrent modulation of competitive mechanisms to design stimuli-responsive Ln-MOFs: a lightoperated dual-mode assay for oxidative DNA damage[J]. Advanced functional materials, 2019, 29(36): 1903058.
- [17] TANG Y, TANASE S. Water-alcohol adsorptive separations using metal-organic frameworks and their composites as adsorbents[J]. Microporous and mesoporous materials, 2020, 295: 109946.
- [18] XIE S, YE J, YUAN Y, et al. A multifunctional hemin@metal-organic framework and its application to construct an electrochemical aptasensor for thrombin detection[J]. Nanoscale, 2015, 7(43): 18232-18238.
- [19] CZAJA A U, TRUKHAN N, MÜLLER U. Industrial applications of metal-organic frameworks[J]. Chemical society reviews, 2009, 38(5): 1284-1293.
- [20] MEEK S T, GREATHOUSE J A, ALLENDORF M D. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials[J]. Advanced materials, 2011, 23(2): 249-267.
- [21] WU H, GONG Q, OLSON D H, et al. Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks[J]. Chemical reviews, 2012, 112(2): 836-868.
- [22] LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chemical reviews, 2012, 112(2): 869-932.
- [23] SHAH M, MCCARTHY M C, SACHDEVA S, et al. Current status of metal-organic framework membranes for gas separations: promises and challenges[J]. Industrial & engineering chemistry research, 2012, 51(5): 2179-2199.
- [24] MCCONNELL E M, NGUYEN J, LI Y. Aptamer-based

biosensors for environmental monitoring[J]. Frontiers in chemistry, 2020, 8: 434.

- [25]ESCUDERO-ABARCA B I, SUH S H, MOORE M D, et al. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains[J]. PLOS ONE, 2014, 9(9): 106805.
- [26] FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A Chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042.
- [27] LIU S, HUO Y, DENG S, et al. A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin[J]. Biosensors & bioelectronics, 2022, 201: 113891.
- [28] WANG C, ZHU K, SHI P, et al. Rapid and label-free detection of aflatoxin B1 using a rationally truncated aptamer and via circular dichroism measurement[J]. Chemical communications, 2022, 58(3): 4779-4782.
- [29] HE J, LI G, HU Y. Aptamer-involved fluorescence amplification strategy facilitated by directional enzymatic hydrolysis for bioassays based on a metal-organic framework platform: highly selective and sensitive

determination of thrombin and oxytetracycline[J]. Mikrochimica acta, 2017, 184(7): 2365-2373.

- [30] WU Y, HAN J, XUE P, et al. Nano metal-organic framework(NMOF)-based strategies for multiplexed microRNA detection in solution and living cancer cells[J]. Nanoscale, 2015, 7(5): 1753-1759.
- [31] GUO J, LIU D, YANG Z, et al. A photoelectrochemical biosensor for rapid and ultrasensitive norovirus detection[J]. Bioelectrochemistry, 2020, 136: 107591.
- [32] HEO N S, OH S Y, RYU M Y, et al. Affinity peptideguided plasmonic biosensor for detection of noroviral protein and human norovirus[J]. Biotechnology and bioprocess engineering, 2019, 24(2): 318-325.
- [33] 曲莉, 王洪艳, 李环, 等. 常规 RT-PCR 快速检测 NoV 方 法的建立[J]. 北华大学学报(自然科学版), 2020, 21(2): 188-190.
- [34] 魏海燕, 曾静, 马丹, 等. 实时 RT-LAMP 与实时荧光 RT-PCR 检测贝类中 GII型 NoV 的研究[J]. 检验检疫学刊, 2013, 23(3): 49-53.
- [35] 高珺珊, 薛亮, 左月婷, 等. NoV 常见流行株胶体金免疫层 析快速检测方法[J]. 微生物学通报, 2020, 47(8): 2665-2672.