

DOI:10.13364/j.issn.1672-6510.20220229

废钢渣负载 CuO 制备催化剂活化过硫酸盐降解磺胺类 抗生素的研究

殷可可,李桂菊

(天津科技大学海洋与环境学院, 天津 300457)

摘 要: 以废钢渣(SSS)为原料,通过化学沉淀法在 SSS 表面引入 CuO,制备一种高效的、可回收的非均相催化剂 CuO/SSS,并将其用于去除废水中传统生物处理难降解的磺胺类抗生素〔磺胺对甲氧嘧啶(SMD)、磺胺嘧啶(SDZ)和 磺胺甲恶唑(SMX)]. 在催化剂投加量 1~2g/L、过硫酸钾(PS)投加量 2~4 mmol/L、反应时间 30 min 的最佳反应条 件下, CuO/SSS+PS 对 20 mg/L 的 3 种不同磺胺类抗生素的去除率均超过 75%, 其中 SMD 的去除率达到 80.29%. 另 外,在海水、湖水和自来水基质中,CuO/SSS+PS 对 SMD 的去除率略微降低至 54%~76%,这主要归因于存在于真实 天然水中的各种无机阴离子. 通过密度泛函理论(DFT)和液相色谱-质谱联用仪(LC/MS)的结果模拟了 SMD 的降解 路径,得出主要降解途径是嘧啶环打开、O2S-NH键断裂、自由基攻击苯环. CuO/SSS+PS 在去除难降解抗生素 SMD 时具有高效性,为活化过硫酸盐降解难降解有机废水寻得了一条途径. 关键词: 废钢渣; CuO; 磺胺废水; 密度泛函理论

中图分类号: X75 文献标志码: A 文章编号: 1672-6510(2023)03-0029-08

Activation of Persulfate for the Degradation of Sulphonamides Antibiotics by Scrap Steel Slag Loaded CuO Preparation Catalyst

YIN Keke, LI Guiju

(College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China)

Abstract: A highly efficient and recyclable non-homogeneous catalyst CuO/SSS was prepared by chemical precipitation with the introduction of CuO on the surface of the pristine material scrap steel slag (SSS). The catalyst was used for the removal of Sulphonamides antibiotics[sulfonamide(SMD), sulfadiazine(SDZ) and sulfamethoxazole(SMX)] from wastewater that are difficult to degrade by conventional biological treatment. The results showed that CuO/SSS + PS attained more than 75% removal of 20 mg/L of sulfonamide antibiotics under optimal conditions with CuO/SSS at 1-2 g/L and PS at 2-4 mmol/L for 30 min, with the highest removal rate of 80.29% for sulfamethoxazole. Moreover, the removal of sulfonamide (SMD) by CuO/SSS + PS was slightly reduced to 54% -76% in seawater, lake water and tap water matrices, which was mainly attributed to the presence of various inorganic anions in real natural water. The degradation pathways of sulfonamide were simulated by density functional theory (DFT) and the result of LC/MS, and the main degradation pathways were pyrimidine ring opening, O₂S---NH bond breaking, and free radical attack on the benzene ring. In view of the high efficiency of CuO/SSS + PS in the removal of refractory antibiotic SMD, a pathway was found for the degradation of refractory organic wastewater by activated persulfate.

Key words: scrap steel slag (SSS); CuO; sulfonamide wastewater; density functional theory

磺胺类抗生素是抗生素中的一大类,其廉价、高 效的特点给人类生产生活带来了巨大益处. 然而, 由 检测到了它们的残留^[1], 甚至在饮用水中也发现了磺

于磺胺类抗生素的广泛使用,在地表水和地下水中均

作者简介: 殷可可(1998-),男,陕西咸阳人,硕士研究生;通信作者:李桂菊,教授,liguij@tust.edu.cn

收稿日期: 2022-10-10; 修回日期: 2022-03-08

胺类抗生素^[2].环境中大量的抗生素残留可能会导致 超级细菌、生物耐药性等一系列问题,这些问题将会 给人类健康带来巨大的威胁.另外,磺胺类抗生素具 有结构稳定和毒性大等鲜明特征,传统的水处理方法 如活性污泥法、生物膜法难以将其高效去除^[3-4].新 兴的高级催化氧化技术(AOPs)在降解难降解有机污 染物方面有着显著的效果.其中,活化过硫酸盐氧化 工艺具有低成本、易操作和高效率等优点,被认为是 最有前景的原位化学氧化技术之一^[5-6].相比于均相 技术,非均相过渡金属催化技术有着低成本和可回收 等优势^[7].

近年来,将工业废弃物用作催化剂的基体材料受 到了人们的关注.该方法不仅可以降低催化剂的成 本,而且为废弃物资源化处置提供了一条可行的途 径^[8].孙培柳^[9]使用废钢渣(SSS)负载铁盐实现了对 苯酚的高效去除;陈美玲等^[10]以钢渣和金属盐为原 料,制备的催化剂对含盐炼油废水生化尾水中化学需 氧量(COD)的去除率为45.4%;Huang等^[11]将天然辉 钼矿用于活化过一硫酸盐(PMS),对阿特拉津降解率 约为99%;Yuan等^[12]用含铁废料制备 Si-Al/*α*-FeOOH,对20 mg/L 甲基蓝的总有机碳(TOC)去除率 达到72%.但是,这些粉末状催化剂具有固液分离速 度慢、回收难等亟待解决的问题^[13].本文利用一种具 有磁性的废钢渣进行研究,制备了磁性催化剂.

废钢渣中的铁氧化物含量较高且废渣粒度均匀, 可以对其进行金属负载制备催化剂^[14].已有研究表 明,单独使用铁氧化物活化过硫酸盐效果不佳,引入 其他过渡金属(Cu、Ni、Mn、Ce等)形成双金属催化 剂,可以提高催化剂的活化效率和使用寿命^[15].CuO 廉价、低毒,一直被广泛用于多相催化反应.然而,单 独使用 CuO 会有大量 Cu²⁺浸出的风险,将 CuO 负载 在废钢渣上,不仅可以提高活化过硫酸盐的效率,而 且还会减少金属离子的浸出^[7].

本研究通过化学沉淀法,利用废钢渣负载 CuO 制备 CuO/SSS 催化剂用于活化过硫酸盐降解磺胺类 抗生素,并且模拟了真实废水中磺胺抗生素的去除, 为解决废钢渣再利用和抗生素废水治理提供了理论 依据和技术支撑.

1 材料与方法

1.1 实验原料

CuSO₄·5H₂O、NaOH、过硫酸钾(PS),分析纯, 凯玛特(天津)化工科技有限公司;磺胺对甲氧嘧啶 (SMD)、磺胺嘧啶(SDZ)、磺胺甲恶唑(SMX),质量 分数 98%,上海源叶生物科技有限公司.废钢渣来自 某炼钢厂,主要成分见表 1(Cr²⁺、Cd²⁺、Pb²⁺、Hg²⁺均 未检测出).

表 1 废钢渣的主要成分 Tab. 1 Main components of SSS

成分	质量分数/%			
Fe ₂ O ₃	87.66			
MnO	0.67			
Al ₂ O ₃	0.59			
MgO	1.59			
CaO	2.70			
SiO ₂	6.57			
其他	0.22			

1.2 催化剂的制备

将 1g SSS 样品与 100 mL 去离子水混合,将悬 浮液搅拌 10 min 后,超声处理 10 min,以完全去除表 面杂质并暴露出活性位点.按照 n(Fe):n(Cu)=1: 4 的比例将 SSS 和 CuSO4·5H₂O 加入去离子水中,在 磁力搅拌下将 4 mol/L NaOH 溶液逐滴加入悬浮液 中,直到悬浮液 pH 为 10.在 80 ℃下搅拌 1h 后,将 混合物冷却到室温,老化 1h,用磁铁收集沉淀物.沉 淀物用去离子水洗涤 3 次,并在 50 ℃的烘箱中干 燥.干燥后的沉淀物在 300 ℃的管式炉中煅烧 2h(氮 气氛围).研磨煅烧后的沉淀物,得到粉末状的催化 剂,命名为 CuO/SSS.

1.3 催化氧化实验

在室温下,通过降解实验对催化剂的性能进行评估.按照 1 g/L 的投加量将催化剂加入抗生素初始质量浓度为 20 mg/L 的废水中,混合物通过磁力搅拌器 以 200 r/min 的转速对废水进行搅拌.物理吸附 5 min 后,加入 PS 开始催化降解实验.在不同时间段(0、5、10、15、20、30 min)分别取样 3 mL,过滤后加入无水乙醇进行淬灭处理,之后测定样品中的抗生素质量浓度.

1.4 分析方法

用紫外分光光度计在最大吸收波长处(SMD 为 266 nm、SDZ 为 260 nm、SMX 为 265 nm)测量样品 的吸光度,并计算抗生素的质量浓度. Cu²⁺通过原子 吸收光谱法进行测定. 降解产物通过液相色谱-质谱 联用仪(LC/MS)进行测定. 在 190~400 nm 范围内 扫描,流动相 A 为乙腈,流动相 B 为质量分数 0.1% 的甲酸水溶液. 在 Material studio 2020 中进行密度泛 函理论(DFT)计算, f⁰ 指数描述 SMD 中易受自由基 攻击的活性位点种类. CASTEP 模块用于计算

SMD 的 Mulliken 布居, 通过 DMol³ 模块进行 f^{0} 函数 分析^[16].

2 结果与讨论

2.1 SSS/CuO的结构表征

本研究主要采用与 Xian 等^[17]及 Yin 等^[18]相同的 方法合成 CuO,由扫描电子显微镜 (SEM)图 (图 1)和 元素含量分析结果 (表 1)可知, Cu、Fe、O 元素存在 于催化剂中.另外,前期已经对 CuO/SSS 的 X 射线 光电子能谱进行研究,在 Cu2p 的 X 射线光电子能谱 中,结合能 941.2 eV (Cu2p1/2)和 943.7 eV 处的峰为 CuO 中 Cu²⁺的特征峰.以上结果可以证实实验成功 合成了 CuO/SSS^[18].

Tab. 2	Element conte	nt of CuO/SS	S catalys

Tubia Elementee	mem of Cuorobo cuuryse
元素	质量分数/%
0	5.51
Fe	12.32
Cu	82.17

2.2 SSS/CuO对 SMD的吸附

吸附对催化反应十分重要,为考察 CuO/SSS 对

SMD 的吸附动力学,采用一级动力学模型〔式(1)〕、二级动力学模型〔式(2)〕对所得数据进行非线性拟合^[19].在 20 mg/L SMD 溶液中分别加入 0.2、 0.6、1.0 g/L CuO/SSS,研究 CuO/SSS 投加量对 SMD 的吸附性能影响;在 CuO/SSS 投加量为 1.0 g/L 时,研究 SMD 质量浓度为 5、10、20 mg/L 时对 CuO/SSS 吸附性能的影响.动力学拟合结果如图 2 所示,相关 参数见表 3、表 4.

$$q = q_{\rm e} (1 - {\rm e}^{-k_{\rm I} t}) \tag{1}$$

$$q = \frac{q_{e}^{2}k_{2}t}{1 + q_{e}k_{2}t}$$
(2)

式中:q为 t时刻的吸附量, mg/g; q_e 为平衡吸附量, mg/g; k_1 为一级动力学速率常数; t为吸附时间, s; k_2 为二级动力学速率常数, g/(mg·s).

- 图 2 不同催化剂投加量和不同 SMD 初始质量浓度下的 吸附效果
- Fig. 2 Adsorption effects at different catalyst dosages and different initial mass concentrations of SMD

表 3	个同 CuO/SSS 投加重卜的吸附切刀字夸致

Tab. 3 Adsorption kinetic parameters at different CuO/SSS dosages							
模型	投加量/(g·L-1)	$q_{ m e}$	k_1	R^2			
	1.0	1.46	0.015	0.990			
一级动力学	0.6	2.31	0.012	0.989			
	0.2	3.66	0.019	0.997			
模型	投加量/(g·L ⁻¹)	q_{e}	$k_2/(\mathbf{g}\cdot\mathbf{mg}^{-1}\cdot\mathbf{s}^{-1})$	R^2			
	1.0	1.53	0.002 7	0.989			
二级动力学	0.6	2.67	0.005 4	0.987			
	0.2	3.84	0.001 7	0.988			

Tab. 4 Adsorption kinetic parameters at different initial mass concentrations of SMD						
模型	初始质量浓度/(mg·L⁻¹)	q_{e}	$\overline{k_1}$	R^2		
	5	0.45	0.023 9	0.986		
一级动力学	10	1.15	0.023 4	0.972		
	20	2.31	0.012 9	0.989		
模型	初始质量浓度/(mg·L ⁻¹)	q_{e}	$k_2/(\mathbf{g}\cdot\mathbf{m}\mathbf{g}^{-1}\cdot\mathbf{s}^{-1})$	R^2		
	5	0.49	0.049	0.983		
二级动力学	10	1.28	0.019	0.965		
	20	2.67	0.005	0.987		

表 4 不同 SMD 初始质量浓度下的吸附动力学参数

图 2 展示吸附时间对 CuO/SSS 吸附 SMD 的影 响. 催化剂吸附量均呈现先快速增加后缓慢增加的 趋势. 吸附 5 min 后,催化剂对 SMD 的吸附达到饱 和. 为评价吸附过程的控速步骤和吸附机理,采用一 级动力学模型和二级动力学模型对吸附数据进行拟 合. 由表 3 和表 4 的拟合结果可知, CuO/SSS 吸附 SMD 的过程更符合一级动力学模型,其决定系数 R^2 为 0.97~0.99. 污染物的平衡吸附量也与实验值更为 接近. 这些结果表明 CuO/SSS 对抗生素 SMD 的吸 附过程是由物理吸附控制,而不是化学反应控制^[20].

2.3 不同磺胺抗生素的降解

为了探究 CuO/SSS 的催化性能,选取了 SMD、 SDZ 和 SMX 3 种磺胺类抗生素对 CuO/SSS 的催化 性能进行评价. 在 SMD、SDZ、SMX 初始质量浓度 20 mg/L, PS 浓度 2 mmol/L 时, CuO/SSS 投加量对 降解磺胺抗生素的影响如图 3 所示.图 3(a)表明,当 催化剂投加量从 0.4 g/L 增加到 1.0 g/L 和 1.5 g/L 时, SMD 的去除率从 62.86% 分别增加到 76.74% 和 79.08%. 催化剂投加量的增加可以增加催化剂的活 性位点.图 3(b)显示,随着催化剂的投加量从 0.2 g/L 增加到 2 g/L, SDZ 的去除率从 52.81% 增加至 76.42%, 在投加量为 1.5 g/L 时, SDZ 的最高去除率 为 77.13%. 图 3(c)表明,催化剂投加量为 2.0 g/L 时,SMX 的最高去除率为 77.57%. 此外,由于磁性 颗粒的团聚,催化剂的活性位点在较高的催化剂投加 量下有所减少[21].

从图 3 可知,在催化剂投加量分别为 1.0、1.5、 2.0 g/L 时, SMD、SDZ、SMX 的去除率分别达到了 80.29%、77.13%和 77.57%. 另外, 1.0 g/L 的 SSS 对 磺胺类抗生素的降解贡献均小于 10%,说明 CuO/SSS 具有优异的催化性能.

在 SMD、SDZ 和 SMX 体系中 CuO/SSS 投加量 分别为 1.0、1.5、2.0 g/L 时,不同过硫酸盐投加量对 磺胺抗生素的降解结果如图 4 所示.

图 4(a)表明,随着过硫酸盐从 0.5 mmol/L 增加 到 4 mmol/L, SMD 的去除率从 63.94% 增加到 80.29%. 图 4(b)显示,随着过硫酸盐投加量的增加, SDZ 的去除率逐渐增加. 在过硫酸盐为 2 mmol/L 时, SDZ 的去除率为 74.62%. 图 4(c)显示:在过硫 酸盐投加量为 2 mmol/L 时, SMX 的最高去除率为 77.57%;进一步增加过硫酸盐用量,对抗生素去除率 的提高不显著. 这主要是由于 CuO/SSS 的活性位点 在高浓度的过硫酸盐投加下达到饱和,过多的SO; 将被淬灭或产生氧化性较低的自由基〔方程(I)、方 程(II)〕, Ma 等^[22]发现了类似的现象. 综上所述, 在 2~4 mmol/L PS 投加量下, CuO/SSS + PS 体系对 磺胺类抗生素有着较好的降解效果.

$$SO_{4}^{-} + SO_{4}^{-} \to S_{2}O_{8}^{2-}$$
(I)
$$SO_{4}^{-} + S_{2}O_{8}^{2-} \to SO_{4}^{2-} + S_{2}O_{8}^{2-}$$
(II)

$$O_4^{-} + S_2 O_8^{2-} \to SO_4^{2-} + S_2 O_8^{2-}$$
 (II)

Fig. 4 Effects of different PS dosages on the degradation of sulfonamide antibiotics

2.4 天然水体中的 SMD 降解

有研究^[23]表明,真实水体中存在的各种物质对 CuO/SSS+PS 体系有着显著的影响.为此,本研究在 CuO/SSS 催化剂投加量 1.0g/L、PS 的投加量 4.0 mmol/L、SMD 初始质量浓度 20 mg/L 的条件下, 探究 CuO/SSS + PS 体系对不同水体(海水、湖水、自 来水)中 SMD 的催化降解性能,结果如图 5 所示. 与 去离子水相比,海水、湖水和自来水中 SMD 的去除 率都有降低,在海水中降低最明显.反应至 120 min 时,海水、湖水、自来水中 20 mg/L 的 SMD 的去除率 分别为 54.17%、71.24%、76.13%. SMD 在实际水中 的去除率降低是因为真实水中一些无机阴离子可以 消耗 SO-和·OH. 增加过硫酸盐的投加量, SMD 的去 除率略有增加之后又减少,这可归因于过硫酸盐对自 由基的淬灭^[24]. 综上所述,在真实水体中, CuO/SSS+ PS 体系对 SMD 降解有着较好的去除效果.

Fig. 5 Degradation of SMD in different natural water

2.5 催化剂的回收和重复稳定性

在催化剂 CuO/SSS 投加量 1.0 g/L、PS 的投加量 4.0 mmol/L、SMD 初始质量浓度 20 mg/L、反应 30 min 时, CuO/SSS 在循环 5 次后的催化性能对照图如图 6 所示. 外加磁场回收 CuO/SSS 的效果如图 7 所示.

(a) 分离前
 (b) 分离后
 图 7 外加磁场回收 CuO/SSS
 Fig. 7 Recovery of CuO/SSS by applied magnetic field

从图 6 可以看出:在 5 次循环后,复合催化剂仍 然保持 67.64% 的去除率,说明 CuO/SSS 催化剂具 有良好的稳定性.另外,首次反应完成后检测出 Cu²⁺ 的质量浓度为 3.7 mg/L,远低于本课题组^[18]和 Lyu 等^[24]报道的 CuO 活化过硫酸盐体系中的 Cu²⁺的质量 浓度,二者分别为 8.7 mg/L 和 25 mg/L. 图 7 显示, 在催化氧化反应结束后,CuO/SSS 在外加磁场的作 用下很容易回收.

2.6 SMD 降解途径的分析

在 SMD 初始质量浓度 100 mg/L、CuO/SSS 投加量 3.0 g/L、PS 投加量 12 mmol/L 时,不同时间点上清液的紫外-可见光谱如图 8 所示.从紫外-可见光谱中发现:随着时间的推移,SMD 在 266 nm 处的吸光度在逐渐降低,这可以说明 SMD 在逐渐被降解;但是,在 200 nm 处的峰没有显著降低,说明降解过程中存在中间产物.本课题组之前已经研究报道过该体系存在矿化^[18].

图 8 SMD 在降解过程中的紫外-可见光谱图 Fig. 8 UV-vis spectra of SMD in the degradation process

使用 LC/MS 的结果和 DFT 计算分析了 SMD 和 中间体的降解途径结果如图 9 所示.

NH₄⁺+SO₄²⁻+CO₂+H₂O

图 9 CuO/SSS + PS体系中 SMD 的降解途径 Fig. 9 Degradation pathway of SMD in CuO/SSS + PS system

根据 LC/MS 的结果, SMD 的降解产物中共检测 到 15 种降解中间体. 它们的分子结构根据测量的质 荷比以及与现有文献的比较提出^[25-26]. DFT 计算分 析 LC/MS 结果建议的可能降解途径. 表 5 展示了 SMD 中原子、布居和化学键长度的 f^0 指数,用以分析 SMD 中的键和自由基攻击位点的强度. 图 10 为 SMD 的分子结构. 自由基攻击指数 f^0 表示 SMD 中的原子受到自由基攻击的可能性.

Tuste j' males for atomic, population and chemical solid lengths in Shib									
原子	f^0	化学键	布居	键长/nm	原子	f^{0}	化学键	布居	键长/nm
C(1)	0.008	C(1)—N(17)	0.79	0.138	C(11)	0.090	C(11)—C(12)	1.03	0.140
C(2)	0.015	C(1)—C(2)	1.07	0.141	C(12)	0.020	C(12)—C(13)	1.08	0.139
C (3)	0.001	C(2) - C(3)	1.11	0.138	C(13)	0.076	C(13) - N(14)	0.97	0.134
C (4)	0.002	C(4) - C(5)	1.06	0.139	N(14)	0.077	C(9) - N(14)	1.03	0.134
C (5)	0.004	C(5) - C(6)	1.10	0.138	O(15)	0.043	C(12)—O(15)	0.65	0.136
C (6)	0.017	C(1)—C(6)	1.08	0.140	C(16)	-0.036	C(16)—O(15)	0.47	0.142
S(7)	0.002	C(4) - S(7)	0.61	0.176	N(17)	0.036	C(11) - N(10)	1.00	0.132
N (8)	0.029	N(8) - S(7)	0.38	0.171	O(18)	0.049	O(18) - S(7)	0.65	0.143
C (9)	0.026	C(9) - N(8)	0.72	0.140	O(19)	0.028	O(19) - S(7)	0.65	0.143
N(10)	0.068	C(9) - N(10)	1.00	0.134					

表 5 SMD 中原子、布居和化学键长度的 f^0 指数 Tab 5 f^0 indices for a tomic population and chemical bond lengths in SMD

图 10 SMD 的分子结构 Fig. 10 Molecular structure of SMD

基于已识别的降解中间体和 DFT 计算,评估了 降解机制并展示了 3 种主要降解途径:嘧啶环打开、 O₂S—NH 键断裂、自由基攻击苯环.

首先, SMD 中甲氧基羟基化, 之后嘧啶环开 环. 由于 C(11)、C(13)具有较大的 f⁰值, 容易受到 攻击形成 P1-3, 并且 C(9) — N(8) 的键长为 0.141 nm, 布居较小, 为 0.72, 容易被自由基攻击, 断 裂形成 P1-4, 进一步氧化成 P1-5、P1-6.

其次, SMD 的 O₂S—NH 键断裂形成 2-氨基-5-甲氧基嘧啶和对氨基苯磺酸, 磺酸基团进一步被氧化 生成 P2-3, P2-1、P2-2 和 P2-3 进一步氧化成对苯二 酚 P2-4.

然后, 苯环会被自由基攻击形成 P3-1. 由于 C(4)—S(7)键的键长为 0.176 nm, 因此它更容易受 到攻击, 断裂形成 P4-1, P4-1 的甲氧基团或者 N 被 氧化形成 P4-2、P4-3、P4-4.

最终, SMD 的中间产物被氧化成 SO₄²⁻、CO₂、 NH₄⁺ 和 H₂O.

3 结 论

(1)通过化学沉淀法将 CuO 负载到废钢渣中制

备出 CuO/SSS. 在 CuO/SSS 的投加量 1~2g/L、PS 投加量 2~4 mmol/L 且 CuO/SSS + PS 体系反应至 30 min 时, 20 mg/L SMD 的最大去除率达到 80.29%, 磺胺嘧啶和磺胺甲恶唑的最大去除率也达到 75% 以上.

(2)受真实天然水体中存在的无机阴离子的影响,在海水、湖水和自来水中,CuO/SSS+PS对 SMD的去除率略微降低,分别为 54.17%、71.24%、76.13%,在海水中去除率下降最为明显.

(3)通过检测降解过程中的中间体和 DFT 计算, 阐明了 SMD 的降解过程,主要降解途径为:嘧啶环 打开、O₂S—NH 键断裂、自由基攻击苯环.

参考文献:

- SHI W L, LI M Y, HUANG X L, et al. Construction of CuBi₂O₄/Bi₂MoO₆ p-n heterojunction with nanosheetson-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation[J]. Chemical engineering journal, 2020, 394: 125009.
- WEI R C, GE F, HUANG S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China[J]. Chemosphere, 2011, 82 (10) : 1408–1414.
- [3] WANG J L, WANG S Z. Microbial degradation of sulfamethoxazole in the environment[J]. Applied microbiology and biotechnology, 2018, 102:3573-3582.
- [4] 齐亚兵,张思敬,孟晓荣,等. 抗生素废水处理技术现 状及研究进展[J]. 应用化工,2021,50(9):2587-2593.
- [5] DONG C D, CHEN C W, NGUYEN T B, et al. Degradation of phthalate esters in marine sediments by persul-

fate over Fe-Ce/biochar composites[J]. Chemical engineering journal, 2020, 384: 123301.

- [6] HUNG C M, HUANG C P, CHEN C W, et al. Degradation of organic contaminants in marine sediments by peroxymonosulfate over LaFeO₃ nanoparticles supported on water caltrop shell-derived biochar and the associated microbial community responses[J]. Journal of hazardous materials, 2021, 420; 126553.
- [7] SUN M Y, LEI Y, CHENG H, et al. Mg doped CuO-Fe₂O₃ composites activated by persulfate as highly active heterogeneous catalysts for the degradation of organic pollutants[J]. Journal of alloys and compounds, 2020, 825:154036.
- [8] ZHOU C Y, ZHOU H Y, HUANG B K, et al. Recent advances in the preparation, application and end-of-life treatment of magnetic waste-derived catalysts for the pollutant oxidation degradation in water[J]. Chemosphere, 2021, 263: 128197.
- [9] 孙培柳. 改性钢渣催化剂的制备及催化臭氧氧化苯酚 研究[D]. 北京:中国地质大学,2021.
- [10] 陈美玲,颜家保,谢鹏凯,等. 钢渣污泥陶粒催化剂的 制备及其催化性能[J]. 武汉科技大学学报,2019, 42(5):349-353.
- [11] HUANG Y C, LAI L D, HUANG W F, et al. Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation; role of sulfur vacancy, degradation pathways and mechanism[J]. Journal of hazardous materials, 2022, 435; 128899.
- [12] YUAN B L, XU J G, LI X T, et al. Preparation of Si-Al/α-FeOOH catalyst from an iron-containing waste and surface-catalytic oxidation of methylene blue at neutral pH value in the presence of H₂O₂[J]. Chemical engineering journal, 2013, 226: 181–188.
- [13] ETACHERI V, ROSHAN R, KUMAR V. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis[J]. ACS Applied materials & interfaces, 2012, 4(5):2717–2725.
- [14] ZHANG Z J, FENG Y, LIU N, et al. Preparation of Sn/Mn loaded steel slag zeolite particle electrode and its removal effect on rhodamine B(RhB)[J]. Journal of water process engineering, 2020, 37: 101417.
- [15] TANG D D, ZHANG G K, GUO S. Efficient activation of peroxymonosulfate by manganese oxide for the degradation of azo dye at ambient condition[J]. Journal of colloid and interface science, 2015, 454: 44–51.
- [16] XU P, WANG P, LI X, et al. Efficient peroxymonosul-

fate activation by CuO-Fe $_2O_3$ /MXene composite for atrazine degradation: performance, coexisting matter influence and mechanism[J]. Chemical engineering journal, 2022, 440: 135863.

- [17] XIAN G, NIU L J, ZHANG G M, et al. An efficient CuO-γFe₂O₃ composite activates persulfate for organic pollutants removal: performance, advantages and mechanism[J]. Chemosphere, 2020, 242: 125191.
- [18] YIN K K, HAO L L, LI G J. CuO nanosheets incorporated scrap steel slag coupled with persulfate catalysts for high-efficient degradation of sulfonamide from water[J]. Environmental research, 2023, 216: 114614.
- [19] 刘欢,李子音,马军冠,等. 污泥基介孔碳材料的制备 及吸附抗生素的性能[J]. 沈阳大学学报(自然科学 版),2019,31(3):189-194.
- [20] 李小川,王英刚,马溶涵,等. 化学活化法制备造纸污 泥碳质吸附剂优化条件及性能研究[J]. 沈阳大学学报 (自然科学版),2017,29(4):307-313.
- [21] PENG W, LIU J, LI C X, et al. A multipath peroxymonosulfate activation process over supported by magnetic CuO-Fe₃O₄ nanoparticles for efficient degradation of 4chlorophenol[J]. Korean journal of chemical engineering, 2018, 35: 1662–1672.
- [22] MA Q L, ZHANG H X, ZHANG X Y, et al. Synthesis of magnetic CuO/MnFe₂O₄ nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate[J]. Chemical engineering journal, 2019, 360: 848–860.
- [23] WACŁAWEK S, LUTZE H V, GRÜBEL K, et al. Chemistry of persulfates in water and wastewater treatment: a review[J]. Chemical engineering journal, 2017, 330:44– 62.
- [24] LYU J C, GE M, HU Z, et al. One-pot synthesis of magnetic CuO/Fe₂O₃/CuFe₂O₄ nanocomposite to activate persulfate for levofloxacin removal: investigation of efficiency, mechanism and degradation route[J]. Chemical engineering journal, 2020, 389: 124456.
- [25] ZHANG H M, JIA Q Z, YAN F Y, et al. Heterogeneous activation of persulfate by CuMgAl layered double oxide for catalytic degradation of sulfameter[J]. Green energy & environment, 2022, 7(1):105–115.
- [26] DENG X Y, ZHAO Z W, WANG C, et al. Insight into the nonradical mechanism of persulfate activation via visible-light for enhanced degradation of sulfonamides without catalyst[J]. Applied catalysis B: environmental, 2022, 316: 121653.