Vol. 37 No. 3 Jun. 2022

第37卷 第3期 2022年6月

Journal of Tianjin University of Science & Technology

DOI:10.13364/j.issn.1672-6510.20210234

基于自适应位置调节的粒子群 MPPT 控制方法

天津科技大学学报

游国栋,李兴韫,马 元,徐 滨,侯晓鑫,赵双乐 (天津科技大学电子信息与自动化学院,天津 300222)

摘 要:为了提高光伏发电系统最大功率点追踪(maximum power point tracking, MPPT)的效率,提出一种基于自适应 位置调节的粒子群 MPPT 控制方法.该方法采用 Tent 映射对粒子位置进行初始化,通过赋予粒子反捕食的能力,自动 更新粒子位置,给予速度一个较小的扰动,以解决光伏系统陷入局部最优的问题.通过 MATLAB 进行仿真,与传统粒 子群算法(particle swarm optimization algorithm, PSO)相比,该方法在 MPPT 的快速性和准确性上获得了满意的性能. 关键词:光伏系统; MPPT; 自适应; 粒子群算法

中图分类号: TK51 文献标志码: A 文章编号: 1672-6510(2022)03-0049-05

MPPT Control Method Based on Particle Swarm Optimization with Adaptive Position Adjustment

YOU Guodong, LI Xingyun, MA Yuan, XU Bin, HOU Xiaoxin, ZHAO Shuangle (College of Electronic Information and Automation, Tianjin University of Science & Technology, Tianjin 300222, China)

Abstract: In order to improve maximum power point tracking (MPPT) efficiency of photovoltaic power generation system, in this article we propose MPPT control method based on particle swarm optimization with adaptive position adjustment. In the method Tent mapping was used to initialize the particle position; by giving particles anti-predation ability, the particle position was automatically updated; by giving a small disturbance to the velocity, the problem of the photovoltaic system falling into a local optimum was solved. Through MATLAB simulation, and compared with the traditional particle swarm optimization algorithm (PSO), this method has achieved satisfactory performance in the rapidity and accuracy of MPPT.

Key words: photovoltaic system; MPPT; adaptive; particle swarm optimization algorithm

太阳能具有安全、环保、资源充足等优点,是一种清洁能源^[1]. 光伏发电是太阳能利用的一种主要形式. 随着光伏发电技术的日益成熟,对发电效率的要求也愈发提高,其中,最大功率点是表征发电效率的一个关键指标. 然而,在光伏阵列受到不均匀光照时,光伏系统会陷入局部最优状态,严重影响光伏系统对最大功率点追踪(maximum power point tracking, MPPT)的效率,因此,对最大功率点的追踪变得尤为重要.

最大功率点追踪的传统方法包括扰动观测法、电导增量法、模糊控制法等. 文献[2]采用直接占空比技术,提出一种变步长扰动观测法,有利于增强光伏系统的稳态性能,但该方法只在传统升压变换器中进行验证;文献[3]使用自适应占空比,提出一种改进的电导增量法,在追踪最大功率点时响应速度快,但运算过程比较复杂;文献[4]结合模糊控制和粒子群算法, 提出一种模糊自适应粒子群算法,提高了最大功率点追踪精度;文献[5]通过引入加速度系数,提出一种改

收稿日期: 2021-11-11; 修回日期: 2022-01-27

基金项目: 天津市科技支撑重点项目(17YFZCNC00230); 天津市应用基础与前沿技术研究计划(自然科学基金)重点资助项目 (13JCZDJC29100)

作者简介:游国栋(1973一),男,山西人,教授,yougdong@sina.com

进惯性权重的混沌粒子群算法,降低了在最大功率点 附近的振荡.

本文提出一种基于自适应位置调节的粒子群 MPPT 控制方法.首先,运用 Tent 映射产生混沌序 列,对粒子位置进行更新.然后,赋予粒子反捕食的 能力,根据捕食者与粒子之间的距离更新粒子位置; 通过改变惯性权重取值,控制粒子的飞行速度,进而 控制粒子的搜索能力.最后,给速度添加一个极小的 增量扰动,避免出现光伏系统陷入局部最优的情况, 当每一代的全局最优解相同时,该算法停止,输出结 果.通过 MATLAB 仿真,对该算法进行验证,并与传 统粒子群算法结果进行对比.

1 光伏电池模型

1.1 光伏电池模型及特性

光伏电池是太阳光照射半导体 P-N 结产生光生 伏特效应,将光能转化为电能的一种装置.由于单个 的光伏电池输出电压比较低,在进行光伏发电时采用 光伏阵列的形式,将多个光伏电池通过串并联的形式 组成光伏阵列^[6].光伏电池的等效电路如图1所示.

图 1 光伏电池等效电路 Fig. 1 Equivalent circuit of photovoltaic cell

电压电流数学表达模型为

$$I_{pv} = I_{ph} - I_{o} \left[exp \left(\frac{Q(U_{pv} + I_{pv}R_{s})}{AKT} \right) - 1 \right] - \frac{U_{pv} + I_{pv}R_{s}}{R}$$
(1)

式中: I_o 为光伏电池内部等效二极管的 P-N 结反向饱和电流,近似为常数; I_{ph} 为光伏电池的光生电流; I_{pv} 、 U_{pv} 分别为光伏电池的输出电流、输出电压; R_p 、 R_s 分别为并联、串联电阻;Q为电子电荷, $Q = 1.6 \times 10^{-19}$ C;K为玻尔兹曼常数;T为光伏电池所处环境的热力学温度;A为光伏电池内部 P-N 结的曲线常数.

1.2 不均匀光照情况下光伏电池输出特性

当光伏阵列受到均匀光照时,其输出特性曲线中 只有一个峰值点.但是,在实际应用过程中,光伏阵 列受外界环境(如温度、辐射照度、云层遮挡等)影响 较大,导致光伏阵列的输出特性曲线有多个峰值点; 在采用控制方法进行最大功率点追踪时,容易将局部 最优误判为全局最优,使系统出现陷入局部最优的情况,降低了发电效率^[7-8].光伏阵列在接受均匀光照 和不均匀光照情况下的输出特性曲线如图 2 所示.

der illumination

2 粒子群算法及改进算法

2.1 粒子群算法

粒子群算法来自鸟群的启发,将鸟群中的每一只 鸟看作是一个"粒子",鸟群在寻找食物时,相互交 流,传递信息^[9].在鸟群寻找食物时,会有捕食者进 行干扰、捕杀,严重影响粒子群的完整性和寻找食物 的范围,因此,粒子群应当有逃避捕食者的能力^[10]. 当有粒子发现食物时,将会传递信息,使附近的其他 粒子向食物靠近.从起初无序的寻找到最后有目的 的觅食,该过程可以看作是一个寻优的过程.粒子群 算法中两个重要的变量是个体最优解(*p*best)和全体最 优解(*g*best).粒子速度 *v*_{t+1}和位置 *x*_{t+1}更新如式(2)、 式(3)所示.

$$v_{t+1} = \omega v_t + c_1 r_1 (p_{\text{best}} - x_t) + c_2 r_2 (g_{\text{best}} - x_t)$$
(2)

$$x_{t+1} = x_t + v_{t+1} \tag{3}$$

式中:t 为粒子更新迭代的次数, v_t 、 v_{t+1} 分别为粒子 在 t-1 代、t 代时的速度, x_t 、 x_{t+1} 分别为粒子在 t-1

2.2 自适应位置调节的粒子群算法

2.2.1 Tent 映射

初始化是粒子群算法的第一步,初始化运用得 当,可以提高算法的收敛性^[11].本文采用 Tent 映射 对粒子群进行初始化,Tent 映射表达式为

$$y_i + 1 = \begin{cases} 2y_i & 0 \le y_i \le 0.5\\ 2y_i - 1 & 0.5 < y_i \le 1 \end{cases}$$
(4)

随机产生[0,1]内的初值记为 y₀,代入式(4)进行 迭代,当达到最大迭代次数时,程序运行停止,产生 随机序列.

2.2.2 改进的粒子群算法

为了增强粒子群算法的收敛性能和搜索能力,同时保证粒子的完整性,本文对传统粒子群算法进行改进.设置粒子的搜索空间为 D 维,共有 N 个粒子,可将第 i(i=1,2,3,...,N)个粒子在第 t 代第 d(d=1, 2,3,...,D)维表示为 $x_{i,d}^{t+1}$.此处以 2 维为例,设捕食者位置为 (m_1, n_1) ,粒子位置为 (m_2, n_2) ,根据粒子与捕食者的相对距离对粒子位置进行更新,相对距离计算公式为

$$S = \frac{m_1^2 + n_1^2}{(m_1 - m_2)^2 + (n_1 - n_2)^2}$$
(5)

则粒子的位置更新公式为

$$x_{i,d}^{t+1} = \begin{cases} x_{i,d}^t \cdot \exp\left(\frac{-i}{\alpha M}\right) & 0 < S \le R \\ x_{i,d}^t + Q & R < S \le 1 \end{cases}$$
(6)

式中: α 为(0,1]中的随机数, Q 为一个标准正态分 布随机数, M 为最大迭代次数, R 为报警值.

粒子状态如图 3 所示.

Fig. 3 Particle state diagram

在粒子进行搜索时,适应度 $f(x_i^k) = f(p_{best}), f$ 为 目标函数. 以 x_1, x_2 为聚类中心,根据 x_3 与聚类中心 的距离^[12],判断粒子的飞行方向,因此可以将 N 个粒子分为 N/n 个粒子群,距离公式为

$$L = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
(7)

在各个粒子前往聚类中心时,增加惯性权重的取 值,提高粒子对局部最优的搜索能力;在各个聚类中 心前往全局最优解时,减小惯性权重的取值,提高聚 类中心对全局最优解的搜索能力^[13].选择适应度最 大的聚类中心作为全局最优解,为了避免粒子群出现 陷入局部最优的困境,此时给予速度一个小的扰动, $V = \lim_{\Delta \to 0} v + \Delta$,观察适应度 $f(g_{best})$ 是否变化,然后多 次迭代进行验证.

2.2.3 自适应位置调节的粒子群算法基本流程

(1)设置粒子种群规模 N、惯性权重 ω 、加速因子 c_1 和 c_2 、最大迭代次数 M,随机产生一个 y_0 作为第一 个粒子,根据式(4)进行迭代,产生 N-1 个粒子,初 始化速度.

(2)根据粒子和捕食者之间的安全距离,更新各 个粒子的位置和速度.

(3) 评价各个粒子的适应度, 将各个粒子的位置 和适应度存储在 *p*best 中, 将所有 *p*best 中适应度最优的 位置和适应度存储在 *g*best 中.

(4)根据适应度,选择聚类中心,将粒子分为若 干个粒子群,并更新惯性权重取值.

(5)对于各个聚类中心,与其前一个最优位置相 比较,如果较好,则作为当前的最优位置;比较当前 所有的 *p*best和上一次迭代的 *g*best,更新 *g*best.

(6)对此时全局最优解施加一个速度扰动,观察 适应度 *f*(g_{best})是否变化,并进行多次迭代验证.

(7) 若达到精度要求或迭代次数, 搜索停止, 输出结果, 否则返回(3).

3 仿真分析

为了验证自适应位置调节的粒子群算法的优化 性能,现选取 6 种具有不同特点的基准函数进行比较 测试,结果见表 1. 对 f_1 、 f_2 、 f_3 、 f_4 均采用 30 维进行测 试,对 f_5 、 f_6 分别采用 2 维和 4 维进行测试.参数设置 为:粒子种群规模 N = 50;惯性权重增加时 $\omega = 0.8$, 减小时 $\omega = 0.4$;加速因子 $c_1 = 2$ 、 $c_2 = 2$,最大迭代次 数 M = 500,粒子速度范围为[-40,40].粒子群算法 (PSO)、麻雀算法(SSA)与自适应位置调节的粒子群 算法(APSO)的仿真结果如图 4 所示.通过对比仿真 结果可知,在不同维数、不同测试函数下,本文所提 出的方法具有更好的收敛精度且收敛稳定性较好.

Tab. 1 Six base functions				
函数类型	表达式		x_i 的取值范围	最优值
高维单峰函数	$f_1(x) = \sum_{i=1}^n x_i^2$		[-100, 100]	0
	$f_2(x) = \sum_{i=1}^{n} [100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2]$		[-2.048,2.048]	0
高维多峰函数	$f_3(x) = \sum_{i=1}^n [x_i^2 - 10\cos(2\pi x_i) + 10]$		[-5.12,5.12]	0
	$f_4(x) = \frac{1}{4000} \sum_{i=1}^n x_i^2 - \prod_{i=1}^n \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$		[-600,600]	0
低维函数	$f_5(x) = \left[\frac{1}{500} + \sum_{j=1}^{25} \frac{1}{j + \sum_{i=1}^{2} (x_i - a_{ij})^6}\right]^{-1}$		[-65,65]	1
	$f_{6}(x) = -\sum_{i=1}^{10} [(x-a_{i})(x-a_{i})^{T} + c_{i}]^{-1}$		[0,10]	- 10.536 3
10^{20} 10^{10} 10^{10} 10^{-10} 10^{-20} 10^{-20} 10^{-30} 10^{-50}	APSO SSA PSO 200 300 400 500 迭代次数/次	1 正应度 1 1	0 ¹⁰ 0 ⁵ 0 ⁻¹⁰ 0 ⁻¹	APSO SSA PSO 400 500
10 ⁴ 10 ⁹ 短 10 ⁻⁴ 10 ⁻⁸ 10 ⁻¹² 0 100	 (a) f₁ APSO SSA PSO 200 300 400 500 迭代次数/次 (c) f₃ 	1 1 1 1 1 1	(b) f_2 0 ⁴ 0 ⁻⁴ 0 ⁻⁴ 0 ⁻¹² 0 ⁻¹² 0 ⁻¹² 0 ⁻¹² 0 ⁻¹² 0 ⁻¹² 0 ⁻¹² 0 ⁻¹² 0 ⁻¹⁰ 0 ⁻¹⁰ 0 ⁻¹⁰ 0	APSO SSA PSO 400 500
10 ² 10 ¹ 切 ¹ 10 ⁰ 10 ⁻¹ 0 100	APSO SSA PSO 200 300 400 500 迭代次数/次	1 1 1 1 1 1 1 1 1	0 ¹⁰ 0 ⁻¹⁰ 0 ⁻²⁰ 0 ⁻⁵⁰ 0	APSO SSA PSO 400 500
	(e) <i>f</i> ₅		(f) f_6	

表1 6种基准函数

• 52 •

图 4 3种算法的仿真结果 Fig. 4 Simulation results of three algorithms

以光伏阵列输出电压为参考电压,将所有粒子的 位置 x_i 作为光伏阵列输出电压 U_i ,飞行速度 v_i 作为 对参考电压的扰动,粒子群的反捕食能力作为光伏系 统的抗干扰能力,对提出的方法在 MATLAB 软件平 台上进行仿真测试,建立的 MPPT 仿真模型如图 5 所示^[14]. 仿真模型由光伏阵列、BOOST 升压电路、 MPPT 控制器以及负载模块组成^[15]. 设置温度为 25 ℃,辐射照度为 1000 W/m², BOOST 拓扑的 DC-DC 电路的频率为 10 kHz, MPPT 控制器采用基于 ATmega16 的 MPPT 控制系统, MPPT 控制器控制周 期为 0.5 ms、 C_1 = 470 µF、 C_2 = 220 µF、L = 2 mH.

现将 3×3 的光伏阵列分别进行不同辐射照度处理,第一列辐射照度为 600 W/m²,第二列辐射照度为 800 W/m²,第三列辐射照度为 1000 W/m².在传统粒子群算法和自适应位置调节的粒子群算法下,光伏系统输出功率仿真结果如图 6 所示.

由图 6(a)可知:采用传统粒子群算法在辐射照

度为 600 W/m²时,0.13 s 后光伏系统进入稳定状态, 输出功率为 80 W;在辐射照度为 800 W/m²时,0.32 s 后光伏系统进入稳定状态,输出功率为 110 W;在辐 射照度为 1000 W/m²时,0.52 s 后光伏系统进入稳定 状态,输出功率为 150 W. 由图 6(b)可知:采用自适 应位置调节的粒子群算法在辐射照度为 600 W/m² 时,0.08 s 后光伏系统进入稳定状态,输出功率为 100 W,与传统粒子群算法相比,输出功率增加 20 W,效率提高 25%;在辐射照度为 800 W/m²时, 0.25 s 后光伏系统进入稳定状态,输出功率为 150 W,与传统粒子群算法相比,输出功率增加 40 W,效率提高 36%;在辐射照度为 1000 W/m²时, 0.44 s 后光伏系统进入稳定状态,输出功率为 180 W,与传统粒子群算法相比,输出功率增加 30 W,效率提高 20%.

综上所述,当光伏系统输出波形逐渐达到稳定 时,采用传统粒子群算法输出波形畸变程度较大,振 荡幅度较大;当光伏系统输出波形趋于稳定时,采用 自适应位置调节的粒子群算法用时较短,稳态性能更 好;光伏系统在不同的辐射照度下,采用自适应位置 调节的粒子群算法输出功率均高于传统粒子群算法, 在辐射照度发生突变时,光伏系统采用该算法输出功 率变化幅度较小.

4 结 论

针对光伏系统多峰值特性,本文提出了一种自适 应位置调节的粒子群算法,并通过仿真进行验证.结 果表明:运用 Tent 映射产生粒子群序列,可提高算法 的遍历性,降低光伏系统在最大功率点处的振荡;该 算法赋予粒子反捕食的能力,可检测出外界环境对光 伏系统的干扰,防止输出电压失真;该算法对粒子速 度添加一个较小的增量扰动,用于判断粒子群是否获 得全局最优解,避免光伏系统陷入局部最优状态.该 算法无须选择变量的最优取值,可以更加快速地实时 追踪最大功率点,在最大功率点附近振荡较小,提高 了光伏系统的发电效率.

参考文献:

[1] KUMAR R, OJHA K, AHMADI M H, et al. A review status on alternative arrangements of power generation energy resources and reserve in India[J]. International journal of low-carbon technologies, 2020, 15(2):224-(下转第 80 页) Conference on Computer Vision (2014). Cham : Springer, 2014: 94–108.

- [16] EHRLICH M, SHIELDS T J, ALMAEV T, et al. Facial attributes classification using multi-task representation learning[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New York: IEEE, 2016: 7789589.
- [17] 靳一凡. 基于级联卷积神经网络的人脸关键点检测算 法[D]. 杭州:浙江大学,2015.

(上接第53页)

240.

- MANOHARAN P, SUBRAMANIAM U, BABU T S, et al. Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems[J]. IEEE Systems journal, 2020, 15(2):3024–3035.
- [3] LI T Y, ZHU H. Research of solar energy generate system maximum power point tracking algorithm based on Matlab[C]//Proceedings of 2019 Chinese Automation Congress (CAC). Hangzhou: IEEE, 2019: 1861–1865.
- [4] DZIWIŃSKI P, BARTCZUK Ł. A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic[J]. IEEE Transactions on fuzzy systems, 2020, 28 (6) : 1140–1154.
- [5] DURSUN E H, KOYUNCU H, KULAKSIZ A A. A novel unified maximum power extraction framework for PMSG based WECS using chaotic particle swarm optimization derivatives[J]. Engineering science and technology, an international journal, 2021, 24(1):158–170.
- [6] ZHANG J H, WEI X Y, HU L, et al. A MPPT method based on improved fibonacci search photovoltaic array[J]. Tehnički vjesnik, 2019, 26(1):163–170.
- [7] IMTIAZ T, KHAN B H, KHANAM N. Fast and improved PSO (FIPSO) -based deterministic and adaptive MPPT technique under partial shading conditions [J].
 IET Renewable power generation, 2020, 14 (16) : 3164–3171.
- [8] WU J C, JOU H L, HUANG P H. Seven-level power

- [18] 王子衡. 基于 CNN 多模型集成和难三元组损失的细 粒度家居商品图像识别[J]. 中国新通信,2018, 20(24):218-219.
- [19] 赵浩如,张永,刘国柱. 基于 RPN 与 B-CNN 的细粒度
 图像分类算法研究[J]. 计算机应用与软件,2019, 36(3):210-213.
- [20] FU S, HE H, HOU Z G. Learning race from face: a survey[J]. IEEE Transactions on pattern analysis and machine intelligence, 2014, 36 (12): 2483–2509.

责任编辑:郎婧

conversion system for solar power generation system [J]. IET Renewable power generation, 2020, 14(8): 1387–1394.

- [9] FAKHOURI H N, HUDAIB A, SLEIT A. Multivector particle swarm optimization algorithm[J]. Soft computing, 2020, 24 (15) : 11695–11713.
- [10] ZHU Y L, YOUSEFI N. Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm[J]. International journal of hydrogen energy, 2021, 46 (14):9541-9552.
- [11] TOO J, ABDULLAH A R. Chaotic atom search optimization for feature selection [J]. Arabian journal for science and engineering, 2020, 45 (8): 6063–6079.
- [12] WANG Y Z, WANG D, ZHANG X, et al. McDPC: multi-center density peak clustering[J]. Neural computing and applications, 2020, 32 (17): 13465–13478.
- [13] ZHOU J, DONG S B. Hybrid glowworm swarm optimization for task scheduling in the cloud environment[J].
 Engineering optimization, 2018, 50 (6): 949–964.
- [14] LIANG Y L, HE Y Y. Simulation research on the grid connected generation system of solar thermal power generation[J]. Thermal science, 2020, 24(5): 3239–3248.
- [15] KANO F, KASAI Y, KIMURA H, et al. Buck-boost-type MPPT circuit suitable for vehicle-mounted photovoltaic power generation [J]. IEEJ Transactions on electrical and electronic engineering, 2021, 16 (9) : 1229–1238.

责任编辑:周建军