

DOI:10.13364/j.issn.1672-6510.20210174

三种 DNA 条形码对卤虫分类和进化的比较研究

左佳俊,徐 倩,邓元告,梁雪娇,韩学凯,隋丽英 (亚洲区域卤虫参考中心,天津科技大学海洋与环境学院,天津 300457)

摘 要: DNA 条形码已成为物种分类和进化研究的有效工具.本研究开发了 3 种 DNA 条形码用于卤虫物种鉴定和进化关系研究,并分析比较了其有效性. 通过对中国亚洲区域卤虫参考中心储存的 48 份卤虫卵样本进行 DNA 条形码 检测和系统进化树构建,进一步完成对卤虫种的分类鉴定. 结果表明:COI 基因和 16S-12S rRNA 序列均可作为有效的 卤虫 DNA 条形码,在物种水平上显示出 7 个与现有卤虫拓扑结构相似的群体. 但是基于 ITSI 基因构建的系统进化树 与传统的卤虫分类并不一致. 此外,COI 和 ITSI 基因构建的系统进化树显示,Artemia persimilis 位于进化树底部,表明 A. persimilis 可能是一个原始分支,该结果与前人基于 16S-12S rRNA 基因的研究结果一致. 本研究表明,COI 和 16S-12S rRNA 基因均可作为更有效的 DNA 条形码用于卤虫的分类学和进化研究.

关键词: 卤虫; DNA 条形码; COI 基因; 16S-12S rRNA 基因; *ITSI* 基因 中图分类号: S917 文献标志码: A 文章编号: 1672-6510(2022)01-0028-09

Comparative Study of *Artemia* Taxonomic and Evolution Using Three DNA Barcodes

ZUO Jiajun, XU Qian, DENG Yuangao, LIANG Xuejiao, HAN Xuekai, SUI Liying (Asia Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China)

Abstract: DNA barcoding has become an effective tool for taxonomy and evolutionary research. In this study, we developed and compared the validity of three DNA barcodes applied in species identification and evolutionary relationship research of *Artemia*. Forty-eight *Artemia* cyst samples stocked in Asian Regional *Artemia* Reference Centre in China, were subjected to DNA barcoding. Phylogenetic trees were constructed based on DNA barcodes, and all the species were discriminated by their distinct clades in the phylogenetic trees. The result indicated that both *COI* and 16S-12S rRNA sequences were effective DNA markers for *Artemia* identification at species level, showing seven groups similar to the topology structure of the existed *Artemia* species. However, for the *ITS1* gene phylogenetic tree, the clades did not agree well with traditional *Artemia* taxonomy. Moreover, the phylogenetic trees constructed with *COI* and *ITS1* gene showed that *Artemia persimilis* was at the basal position, which revealed that *A. persimilis* was likely to be an original clade. This analysis results are more consistent with previous studies based on 16S-12S rRNA gene. Our findings suggest that *COI* and 16S-12S rRNA gene could be more effictive DNA barcodes for taxonomy and evolution studies of *Artemia*.

Key words: Artemia; DNA barcoding; COI gene; 16S-12S rRNA gene; ITS1 gene

卤虫是一种广温性、耐高盐的小型甲壳类浮游动物,分布于日晒盐场和内陆盐湖高盐水域中.目前普遍认为卤虫包含8大种类^[1],其中5种为来自旧大陆的A. salina、A. urmiana^[2]、A. sinica^[3]、A. tibetiana^[4]和Artemia sp.^[5],2种为来自新大陆的A. franciscana^[5-6]和

A. persimilis^[7],1个孤雌生殖种,被命名为 A. parthenogenetica^[8].同时因地域和生境的不同,形成不同的 品系.营养丰富的卤虫是水产苗种极佳的鲜活饵料. 不同品系卤虫卵及其无节幼体的品系特征不同,在大 小、营养和孵化特性等方面差别较大,而这些差异也

作者简介: 左佳俊(1994—), 男, 山西大同人, 硕士研究生; 通信作者: 隋丽英, 教授, suily@tust.edu.cn

收稿日期: 2021-09-06; 修回日期: 2021-11-15

基金项目:教育部长江学者和创新团队发展计划资助项目(IRT-17R81)

决定了不同品系的卤虫作为开口饵料的效果不同^[9]. 单一地理卤虫品系中存在着不同种的卤虫混杂共存 现象,这给卤虫分类和系统进化研究工作带来挑战.

DNA 条形码是在种内遗传变异始终低于种间遗 传变异的假设下,利用短而标准化的基因区域作为内 部标记进行物种和品系鉴定^[10].如今该技术已被应 用于卤虫种的分类,特别是形态特征相似卤虫种的鉴 别^[11]. 目前,已有多种 DNA 条形码技术被成功应用 于卤虫的分类和系统发育研究. 如线粒体 DNA 细胞 色素氧化酶亚基 I(COI)基因,因其序列相对保守,但 又有足够的变异,而成为鉴定卤虫种最常用的 DNA 条形码^[12-14].内部转录间隔区(ITS)序列为中度保守 序列,ITS 基因的转录产物在 rRNA 形成之前即被剪 掉,不参与成熟核糖体的形成,因此面对的选择压力 相对较小,进化速率快,被认为是在品系水平上对生 物体进行分类的有效 DNA 标记^[15-16]. 研究^[17-19]表明 ITS1 可以作为卤虫系统发育研究的有效 DNA 标 记. 对于线粒体核糖体 RNA 基因, 16S 或 12S 核糖 体 RNA 基因也被认为是卤虫系统发育研究的有效标 记^[18-20]. 16S rRNA 与 12S rRNA 基因序列常常被单 独使用,但是一些物种间的进化关系仅显示于某些基 因中,而通过"联合"途径直接利用所有序列位点提 供进化信息,系统发育分析结果可能会更接近于正确 的物种树. 虽然目前关于 DNA 条形码已有较多相关 研究, 但是将 16S rRNA 与 12S rRNA 基因区域视为一 个整体作为卤虫 DNA 条形码的研究则较少. 同时也 缺乏对这些不同 DNA 条形码的比较研究,特别是在 卤虫的分类和鉴定方面.

本研究旨在通过比较线粒体基因条形码(COI 基因和 16S-12S rRNA 基因)和核基因条形码(ITSI 基因)的基因片段,建立适合于卤虫种水平鉴定的 DNA 条形码,并利用这 3 个标记对 48 个卤虫样品进行遗传距离和进化关系分析.

1 材料与方法

1.1 卤虫样本

本研究所用 48 个卤虫卵样本来自天津科技大学 亚洲区域卤虫参考中心.4 个参照卤虫卵样本 ARC1709、ARC1187、ARC1188 和 ARC1321 取自比 利时根特大学卤虫参考中心.称量卤虫卵样品 25 mg,置于盛有 10 mL 3%稀释卤水的试管中进行水 合;水合 3 h 后,在充气状态下加入 100 µL 脱壳液 (8%的 NaClO 溶液与 30%的 NaOH 溶液的体积比为 20:1)去壳,3 min 后用清水冲洗去壳卵,直至无气 味.将冲洗后的去壳卵收集于 1.5 mL EP 管中,75% 酒精冲洗 1次,灭菌 ddH₂O 冲洗 3次.处理好的卤虫 卵于 – 20 ℃临时保存,并用于下一步 DNA 提取.

1.2 DNA提取、PCR扩增和测序

将处理保存的卤虫卵运用研磨法制备组织液,用 TIANGEN[®]动物组织 DNA 提取试剂盒从组织液中提 取全基因组 DNA.利用 Primer Premier 6.06 (http:// www.premierbiosoft.com/primerdesign/)软件从 GenBank 数据库中获得卤虫的基因序列,设计引 物.本研究将 16S rRNA 基因与 12S rRNA 基因结合 在一起作为一个 DNA 标记,单独设计扩增 16S-12S rRNA 基因片段的引物.扩增 COI、16S-12S rRNA 和 ITS1 基因片段的引物见表 1.

- 表 1 用于扩增线粒体 *COI*、16S-12S rRNA 基因区域以 及核内 *ITS1* 基因区域的引物
- Tab. 1Primers designed for amplifying COI, 16S-12SrRNA and ITS1 gene

基因片段	名称	引物(5′-3′)
COI	COX1S	GCTTGAGCAGGAATAGTGGG
COI	COX1A	AATAAGTTGTTCTATGAGAGGTG
16S-12S rRNA	1612S	ATTCATCAGTGGGCAGGC
16S-12S rRNA	1612A	CCAGCATCCGAGGTCATA
ITS1	T1S	GTCGTAACAAGGTTTCCGT
ITS1	T1A	CATCCTCCAGGGTCATTCT

对 COI 基因片段、16S-12S rRNA 基因区域以及 核内 ITS1 基因进行 PCR 扩增,反应体系(25 μL): 1 µL 模板 DNA, 12.5 µL Premix Taq DNA 聚合酶(日 本 Takara 公司),上下游引物各 1 µL,9.5 µL 无菌 ddH₂O. 扩增反应:4℃预变性 5min;94℃变性 1 min, 退火 1 min(COI、16S-12S rRNA、ITS1 基因的 PCR 退火温度分别为 54、56、58℃), 72℃延伸 1.5 min, 30 个循环; 72 ℃延伸 10 min. 由于 Shuanghu 2014 ARC1188 Yuncheng 2012 Inner Mongolia 2011、Naritusumu 2013、ARC1709 和 ARC1321 样品 的 ITS1 基因序列剪接失败,因此利用单个卤虫卵代 替混合卵用于 ITS1 序列扩增, PCR 反应中加入 6 µL 模板 DNA. PCR 产物送华大基因公司测序. 利用在 线软件 Cloud Splicing(http://customer.genomics.cn/ customer-self/home#/show/pinjie-view) 进行基因拼 接. COI、16S-12S rRNA 和 ITS1 基因片段测得的正 反向序列成功拼接后,获得的序列上传到 GenBank 数据库(表 2),部分测序拼接未成功的则没有上传.

+++ +-	亚住山	收合种		GenBank 序列号	
任平	木集地	金疋們	COI	16S-12S rRNA	ITS1
Aibi 2015	中国新疆维吾尔自治区	A. parthenogenetica	KX925405	KX925419	KY000014
Aibi 2011	中国新疆维吾尔自治区	A. parthenogenetica	KX925406	KX925420	KY000015
ARC1187	中国天津市	A. parthenogenetica	KX925407	KX925421	KY000016
C Tanggu 1990	中国天津市	A. parthenogenetica	MG572052	MG572019	MG572082
C Aibi 1991	中国新疆维吾尔自治区	A. parthenogenetica	MG572053	MG572020	MG572083
C Aibi 2011	中国新疆维吾尔自治区	A. parthenogenetica	MG572054	MG572021	MG572084
C Aibi 2016	中国新疆维吾尔自治区	A. parthenogenetica	MG572055	MG572022	MG572085
C Gahai 1991	中国山东省	A. parthenogenetica	MG572056	MG572023	MG572086
K Borli 2015	哈萨克斯坦 Borli	A. parthenogenetica	MG572057	MG572024	MG572087
K Setine 2015	哈萨克斯坦 Setine	A. parthenogenetica	MG572058	MG572025	MG572088
K Aral 2017	哈萨克斯坦 Aral	A. parthenogenetica	MG572059	MG572026	MG572089
R Big Yarovoe 2015	俄罗斯 Big Yarovoe	A. parthenogenetica	MG572060	MG572027	MG572090
R Kunlundinskoe 2014	俄罗斯 Kunlundinskoe	A. parthenogenetica	MG572061	—	MG572091
R Big Medvejie 2011	俄罗斯 Big Medvejie	A. parthenogenetica	MG572062	MG572028	MG572092
R Big Medvejie 2015	俄罗斯 Big Medvejie	A. parthenogenetica	MG572063	MG572029	MG572093
R Ebeity 2011	俄罗斯 Ebeity	A. parthenogenetica	MG572064	MG572030	MG572094
C Hangu 1990	中国天津市	A. parthenogenetica	MG572065	MG572031	MG572095
C Gaize 1998	中国西藏自治区	A. parthenogenetica	MG572066	MG572032	MG572096
K Xiorbaket 2015	哈萨克斯坦 Xiorbaket	A. parthenogenetica	_	MG572033	MG572097
C Chengkou 1991	中国山东省	A. parthenogenetica	_	MG572034	MG572098
C Jilingzi 2012	中国山东省	A. parthenogenetica	_	MG572035	MG572099
Shuanghu 2014	中国西藏自治区	A. tibetiana	KX925408	KX925422	_
Tibet 2015	中国西藏自治区	A. tibetiana	KX925409	KX925423	KY000017
C Yanabengcuo 2002	中国西藏自治区	A. tibetiana	MG572067	MG572036	MG572100
C Xizang 1997	中国西藏自治区	A. tibetiana	MG572068	MG572037	MG572101
C Anduoshuang 1998	中国西藏自治区	A. tibetiana	MG572069	MG572038	MG572102
C Naqudongqiao 1996	中国西藏自治区	A. tibetiana	MG572070	MG572039	MG572103
C Qixianghu 2002	中国西藏自治区	A. tibetiana	MG572071	MG572040	MG572104
Vinh Chau 2011	越南 Vinh Chau	A. franciscana	KX925410	KX925424	KY000022
SFB 1990	美国 California	A. franciscana	KX925411	KX925425	KY000018
GSL 2014	美国 Utah	A. franciscana	KX925412	KX925426	KY000019
USA GSL 1994	美国 Utah	A. franciscana	MG572072	MG572041	MG572105
USA SFB 1991	美国 California	A. franciscana	MG572073	MG572042	MG572106
USA GSL 2015	美国 Utah	A. franciscana	MG572074	MG572043	MG572107
Inner Mongolia 2011	中国内蒙古自治区	A. sinica	KX925415	KX925429	—
ARC1188	中国内蒙古自治区	A. sinica	KX925413	KX925427	—
Yuncheng 2012	中国山西省	A. sinica	KX925414	KX925428	—
Naritusumu 2013	中国内蒙古自治区	A. sinica	KX925416	KX925430	KY000023
C Yuncheng 2016	中国山西省	A. sinica	MG572075	MG572044	MG572108
C Ximengdahan 1994	中国内蒙古自治区	A. sinica	MG572076	MG572045	MG572109
C Haolebaoqing 1997	中国内蒙古自治区	A. sinica	MG572077	MG572046	—
C Yuncheng 1991	中国山西省	A. sinica	MG572078	MG572047	MG572110
C Yimeng 1991	中国内蒙古自治区	A. sinica	MG572079	MG572048	—
C Bameng 2000	中国内蒙古自治区	A. sinica	MG572080	MG572049	MG572111
C Bayanhu 1994	中国内蒙古自治区	A. sinica	MG572081	MG572050	MG572112
C Wulate 1998	中国内蒙古自治区	A. sinica	_	MG572051	MG572113
ARC1709	利比亚	A. salina	KX925417	KX925431	KY000020
ARC1321	阿根廷	A. persimilis	KX925418	KX925432	KY000024

表 2 实验所用卤虫卵样本信息 Tab. 2 Information on Artemia cysts samples used in this study

1.3 数据分析

现多序列比对、序列信息分析和 Neighbor-Joining 进 通过 MEGA 6 软件(http://www.mega.com/)^[21]实 化树的构建. Neighbor-Joining 进化树构建使用最大 似然法(maximum likelihood method),自展检测 (bootstrap test)设置为 1000 次.利用 GeneDoc 2.7.000(http://www.softpedia.com/get/Science-CAD/ GeneDoc.shtml)软件进行多序列比对.整体转化/颠换 比率(*R*)计算公式为

 $R = [A \times G \times K_1 + T \times C \times K_2]/$ $[(A + G) \times (T + C)]$ (1)

式中:A、T、C、G为碱基数,K₁和K₂分别代表嘌呤和 嘧啶的转化/颠换比率.遗传距离使用最大似然法计 算,并使用Kimura 2 参数模型^[22]进行分析.

2 结果与分析

2.1 序列扩增、测序和比对

分别用 3 种 DNA 分子标记对 48 份卤虫卵扩增 测序. 扩增的 COI、16S-12S rRNA 和 ITSI 基因片段 长度分别为 1597 bp、1238 bp 和 1089 bp. 对各个序 列进行比对和修剪后,用于分析的最终片段长度分别 为 1197 bp、1007~1020 bp 和 676~942 bp. 本研究 使用的所有序列均已保存在 GenBank 数据库中,通 过 BLAST 序列比对,结果见表 2. 结果表明,3 种标 记对卤虫种的鉴定结果一致.

分别对 44 份、47 份和 42 份卤虫样本进行 COI、 12S-16S rRNA 和 ITSI 基因的拼接. 在使用混合卵时,同一样品的序列在电泳图上存在有规则的重叠峰,导致无法提供参考序列. 为了排除卤虫卵样品被 其他物种污染的可能性,进一步将单个卤虫卵作为实 验材料. 同一样本可获得理想序列,只有少数样本未 能成功拼接,其中以 ITSI 测序样本最多,这可能与 ITSI 基因非编码区存在多拷贝有关.

分别对 COI、16S-12S rRNA 和 ITSI 基因片段进 行多序列比对,未发现 COI 基因序列插入或缺失. 与 16S-12S rRNA 基因序列中获得的少量插入不同,序 列插入在 ITSI 基因中频繁出现. A. franciscana、A. persimilis 和 A. salina 的样本插入或缺失较长,最长 的插入有 28 个核苷酸(图 1).

图 1 部分 *ITS1* 核苷酸序列的多重比对结果 Fig. 1 Multiple alignment of partial *ITS1* nucleotide sequences

2.2 核苷酸组成和替代

各位点及密码子各位置上核苷酸组成见表 3.

COI、16S-12S rRNA 和 *ITS1* 基因的 A + T 含量分别 为 62.5% (24.0% + 38.5%)、66.1% (30.9% + 35.2%)

和 53.1% (24.9% + 28.2%). COI 和 16S-12S rRNA 基因序列有轻微的 A + T 偏好性. 16S-12S rRNA 基因的碱基频率表现出 A + T 偏好性,相比于 COI 基因, 15 条 16S-12S rRNA 序列密码子各位上碱基比例的 多态性更明显些.

序列的碱基替代矩阵见表 4. 与颠换替代率相 比,转化替代率占主导地位. 各基因片段最大转化/颠

换值为 *COI* 基因片段 T 对 C 的 41.15%、16S-12S rRNA 基因片段 A 对 G 的 32.95%, *ITS1* 基因片段的 T 对 C 为 19.17%. *COI* 基因序列的转化/颠换的比率 为 *K*₁ = 17.759(嘌呤)和 *K*₂ = 32.257(嘧啶). 整体转 化/颠换比率 *R* 值为 13.41. 16S-12S rRNA 基因序列 *K*₁ = 8.326, *K*₂ = 3.652, *R* = 2.539. *ITS1* 基因序列 *K*₁ = 2.131, *K*₂ = 3.132, *R* = 1.262.

	Tab. 5 Per	centage of nu	cleonde comp	osition at an s	sites and thre	e couon positi	ions		
甘田止仍		所有信	立点/%		密码子第1位/%				
举凶力权	Т	С	А	G	T-1	C-1	A-1	G-1	
COI	35.8	21.5	24.0	18.7	24	19.5	27.2	29.0	
16S-12S rRNA	35.2	18.7	30.9	15.2	33	20.0	31.6	15.3	
ITS1	28.2	18.5	24.9	28.5	25	20.4	22.6	31.7	
甘田止矾		密码子第	育 2 位/%		密码子第3位/%				
至四月权	T-2	C-2	A-2	G-2	T-3	C-3	A-3	G-3	
COI	42	25.5	16.0	16.1	41	19.6	28.8	11.0	
16S-12S rRNA	36	20.1	29.2	14.9	37	16.0	31.9	15.3	
ITS1	28	20.3	24.2	27.5	31	14.7	27.8	26.2	

	表 3	各位点及密码子各位置上核苷酸组成
h 2	Democrate of m	alastide composition at all sites and three adap positions

表 4 序列的碱基替代矩阵 Tab. 4 Nucleotide substitution matrix for markers

COI/%				16S-12S rRNA/%					<i>ITS1</i> /%					
	А	Т	С	G		А	Т	С	G		А	Т	С	G
А	_	1.28	0.77	11.82	Α	_	4.52	2.40	16.17	Α	_	6.12	4.02	13.20
Т	0.86	_	24.72	0.67	Т	3.96	_	8.76	1.94	Т	5.41	_	12.61	6.19
С	0.86	41.15	_	0.67	С	3.96	16.49	_	1.94	С	5.41	19.17		6.19
G	15.19	1.28	0.77	—	G	32.95	4.52	2.40	—	G	11.53	6.12	4.02	

2.3 遗传距离

基于 3 个基因片段的种间(对角线下)和种内(对 角线)遗传距离见表 5. COI、16S-12S rRNA 和 ITSI 序列的平均种内差异分别为 0.6%、1.4% 和 0.6%. COI、16S-12S rRNA 和 ITSI 序列的平均种间差异分 别为 16.2%、17.6% 和 9.1%. A. parthenogenetica、A. urmiana、A. tibetiana 和 A. sinica 的种内和种间遗传 距离均较小.

表 5	基于3个基因片段的种间(对角线下)和种内(对角线)遗传距离

Tuble Interspectes (below and on the uspectes (angoing) generic distance bused on three gene fragments of threem	Tab. 5	Interspecies (below	[,] diagonal) and	intraspecies	(diagonal)	genetic of	distance based	on three gene	fragments of Artemi
--	--------	---------------------	----------------------------	--------------	------------	------------	----------------	---------------	---------------------

基因片段	卤虫种		1	2	3	4	5	6	7
	A. parthenogenetica	1	0.004						
	A. urmiana	2	0.022	_					
	A. tibetiana	3	0.064	0.053	0.010				
COI	A. franciscana	4	0.187	0.187	0.180	0.004			
	A. sinica	5	0.171	0.170	0.175	0.180	0.011		
	A. salina	6	0.239	0.232	0.226	0.241	0.220	_	
	A. persimilis	7	0.218	0.225	0.231	0.217	0.193	0.245	_
	卤虫种		1	2	3	4	5	6	7
	A. parthenogenetica	1	0.005						
	A. urmiana	2	0.016	—					
168 128 PNIA	A. tibetiana	3	0.080	0.076	0.018				
105-125 IKNA	A. franciscana	4	0.185	0.184	0.203	0.012			
	A. sinica	5	0.169	0.167	0.176	0.212	0.027		
	A. salina	6	0.261	0.264	0.257	0.287	0.275		
	A. persimilis	7	0.288	0.283	0.283	0.261	0.305	0.310	—

			续	表					
基因片段	卤虫种		1	2	3	4	5	6	7
	A. parthenogenetica	1	0.001						
ITSI	A. urmiana	2	0.002	—					
	A. tibetiana	3	0.000	0.001	0.000				
	A. franciscana	4	0.143	0.145	0.143	0.003			
	A. sinica	5	0.019	0.020	0.018	0.150	0.029		
	A. salina	6	0.147	0.149	0.147	0.224	0.149	—	
	A. persimilis	7	0.464	0.464	0.464	0.521	0.478	0.498	

注: 在 COI 和 ITS1 基因片段遗传距离矩阵中,由于只分析了一个样本,没有 A. urmiana 的遗传距离数据.在 16S-12S rRNA 基因片段遗传 距离矩阵中,只有 A. urmiana、A. salina 和 A. persimilis 的单一序列,因此没有这些物种的遗传距离数据

2.4 系统进化树

采用 Neighbor-Joining 方法构建基于 3 个标记的

系统进化树(图 2-图 4).

Fig. 2 Phylogenetic tree based on COI gene sequences

根据 COI 基因系统进化树(图 2),将样本分为 7 大类群.其中 A. parthenogenetica 与 A. urmiana 聚集 后再与 A. tibetiana 聚集,形成明显的分枝.而 A. franciscana 和 A. sinica 聚集,再与上述 3 个种聚 集. 进化树的基部位置为 A. persimilis, 其次为 A. salina. 基于 16S-12S rRNA 基因的聚类结果(图 3)与 基于 COI 基因的结果比较相似.

图 3 基于 16S-12S rRNA 基因序列构建的系统进化树 Fig. 3 Phylogenetic tree based on 16S-12S rRNA gene sequences

与 COI 不同的是, A. franciscana 先与 A. salina 和 A. persimilis 聚集, 然后与 A. sinica 聚集, 进化树 的根部也不再只是 A. pesimilis.

• 34 •

基于 *ITS1* 基因构建的系统进化树(图 4), *A*. *franciscana*、*A. salina*和*A. persimilis*的聚类情况与 基于 *COI* 基因的结果相似. 其余样本的分类结果则 不一致, 尤其是 *A. parthenogenetica*、*A. urmiana*、*A. tibetiana*和*A. sinica*杂乱地聚集而无法分开.

3 讨 论

一般而言,鸟类、哺乳动物等高等生物的线粒体 DNA 中 G+C 含量较高,而无脊椎动物等低等生物 的线粒体 DNA 中 A+T 含量较高^[23-24]. 卤虫作为低 等浮游甲壳动物,其 COI 和 16S-12S rRNA 基因序列 有轻微 A+T 偏好性,而核基因 *ITS1* 则无明显 A+T 偏好性. 替代率表示从一个碱基到另一个碱基的替 代概率^[25]. 众所周知,在线粒体和核基因中,转化替 代比颠换替代更有优势^[26-27],而在线粒体 DNA (mtDNA)中这一优势更为显著^[28]. 在本研究中,3 个 组基因片段的转换替代率均高于颠换替代率,这与上 述原则一致. 这可能是卤虫不同地方种群之间长期隔 离没有基因交换导致的,而这将有利于维持卤虫种群 繁衍和进化的稳定性. 序列比对发现相较于 COI 和 16S-12S rRNA 基因序列,在 ITSI 基因序列中插入频 繁出现,尤其 A. franciscana、A. persimilis 和 A. salina 的样本插入或缺失较长,说明 A. franciscana、A. persimilis 和 A. salina 三者间 ITS1 基因的种间差异较 大,这也是相关研究认为 ITS1 基因在卤虫鉴定方面 具有较高潜力的原因之一.

遗传距离反映了不同物种间的遗传关系.研究 表明 COI 基因标记在不同物种间的遗传差异应大于 3%的阈值^[11].本研究基于 COI 和 16S-12S rRNA 标 记的种内距离数据均小于阈值 3%,与理论相符.然 而,由于某些物种间的亲缘关系非常密切,因此基于 3 个标记的种内变异并非都小于 3%,如 ITSI 标记的 种内距离数据超过 3%.此外,本研究中一些亲缘关 系密切的物种,3 个标记的遗传距离矩阵中存在种内 差异和种间差异的重叠.如在原始 COI 遗传距离数 据中,样本 ARC1188 与 Inner Mongolia 2011 的种内 差异为 2.1%,大于序列 A. urmiana JQ975176.1 与 A. parthenogenetica KF707700.1 的种间差异(数据未列 出),这一方面可能是个别卤虫种之间的亲缘太近所 致,另一方面可能是相关分子标记并不完全适用于近 缘种间区分.

DNA 条形码在物种分类和鉴定中起着重要的作用.为了比较和确定 3 种 DNA 条形码的有效性,构建卤虫系统进化树并进行聚类分析. COI 和 16S-12S rRNA 系统进化树显示,卤虫样品被分为 7 个类群,与传统分类一致,而基于 ITS1 系统进化树的聚类则不同,将 A. parthenogenetica、A. urmiana、A. tibetiana和两个 A. sinica 样本聚集. Baxevanis 根据 COI 和 16S-12S rRNA 基因将不同地区的两性卤虫样本聚类为 6 个类群(A. urmiana、A. tibetiana、A. sinica、A. franciscana、A. persimilis 和 A. salina)^[19].也有研究^[17]表明,两性卤虫根据 COI 序列可划分为 6 个不同的遗传类群,而 ITS1 则显示不出完整的谱系,并由此推测孤雌生殖卤虫与 A. urmiana 和 A. tibetiana 的亲缘关系非常密切.这与本研究结果是一致的.

尽管 *ITS1* 基因区域被认为是卤虫种分类的潜在 工具^[12],本研究中 *A. parthenogenetica*、*A. urmiana* 和 *A. tibetiana* 的种内和种间遗传距离很小(0~0.7%), 没有显示出 *ITS1* 基因的优势.结果表明,只有 *A.* franciscana、A. sinica、A. salina 和 A. persimilis 之间 存在较大的遗传差异,而 A. parthenogenetica、A. urmiana 和 A. tibetiana 之间的种间差异不足以支持其 在物种水平上分化. 邹山梅^[29]在以 ITS1 基因序列作 为 DNA 条形码研究新腹足目贝类的系统发育关系 时,也发现了 ITS1 序列没能成功地完成亚种水平的 鉴定,其未能将 N. festiva 和 N. festiva II 区分开. 这可 能的原因是尽管核基因 ITS1 在面对巨大的选择压力 时具有很大的突变率,但它没有足够的时间产生新的 变异, A. parthenogenetica、A. urmiana、A. tibetiana 之 间具有一些共同的单倍体也说明了这一点. 此外,已 有研究报道, A. urmiana 和 A. tibetiana 亲缘关系非常 密切,可能是一个复合种,A. tibetiana 可能在这个复 合种的起源和 A. parthenogenetica 的起源中发挥关键 作用.这也部分解释了为什么在本研究中 A. urmiana、A. tibetiana 和 A. parthenogenetica 关系如此 相近,以至于 ITS1 基因很难将其分开. 此外,考虑到 样本量的影响,还需要大量的样本进一步验证 ITS1 基因用于卤虫种间和种内分类的可行性. 虽然应用 于 DNA 条形码工作中的基因很多,但是目前卤虫系 统分类研究所用基因条形码主要为 COI、ITS1 以及 16S rRNA 与 12S rRNA. 也有研究者利用核基因条形 码 Na/K ATPase 开展卤虫系统分类学研究^[30],发现 Na/K ATPase 基因可以区分两性生殖卤虫和孤雌生 殖卤虫,但却难以显示完整的系统发育关系,这可能 是由于线粒体基因比核基因具有更高的遗传变 异. 后期还需要开发更多高效基因条形码用于卤虫 近缘种间或者品系鉴定研究.

本研究利用 3 种 DNA 条形码对卤虫进化史进 行研究. 在 COI 和 ITS1 基因构建的系统进化树中, 除外群外, A. persimilis 均位于基部位置,说明 A. persimilis 可能是一个原始分支. 之前研究也通过构建 COI 基因的系统进化树,发现 A. persimilis 与 A. sinica、A. urmiana、A. franciscana 相比更接近物种的 祖先种^[12]. 也有研究发现,在 ITS1 基因构建的系统 进化树中 A. persimilis 处于基部位置,而在 COI 基因 构建的系统进化树中 A. salina 比 A. persimilis 更为原 始. 但在本研究 16S-12S rRNA 构建的进化树中,祖 先类群似乎是沿着两个方向进化的,一支进化为 A. persimilis 和 A. salina,然后是 A. franciscana 和 A. sinica,另一支进化为其他物种.本研究基于 COI 和 ITS1 进化树认为 A. persimilis 属于一个物种的祖先 群,这与大多数研究一致. Barigozzi^[31]研究表明,至 少在距今较近的一段时期里 A. persimilis 具有广泛的 地理分布,这也间接证明了上述论点的可能性.

4 结 论

为了提高卤虫分类和鉴定的准确性和可靠性,本研究用多个 DNA 条形码技术对中国、哈萨克斯坦、俄罗斯等国的 48 个取自日晒盐场或盐湖的卤虫标本进行分类和进化研究. 每个 DNA 标记扩增的基因片段均大于 1 kbp,以确保 DNA 条形码可获得更多的遗传信息.结果表明,COI 和 16S-12S rRNA 序列对卤虫分类鉴定有效,而 ITS1 序列仅对 A. franciscana、A. salina 和 A. persimilis 等几种卤虫鉴别有效. COI 和 ITS1 基因构建的系统进化树表明 A. persimilis 可能是一个原始分支,属于一个物种的祖先群.研究结果可为卤虫样本鉴定和卤虫资源保护与可持续开发利用提供重要工具和分析手段.

参考文献:

- HOU L, BI X D, ZOU X Y, et al. Molecular systematics of bisexual *Artemia* populations[J]. Aquaculture research, 2006, 37:671–680.
- [2] GÜNTHER R T. Contributions to the natural history of Lake Urmi, N. W. Persia, and its neighborhood[J]. Journal of linnaeus society, 1988, 27 (177) : 345–453.
- [3] CAI Y. A redescription of the brine shrimp (*Artemia sinica*) [J]. The wasmann journal of biology, 1989, 47: 105–110.
- [4] ABATZOPOULOS T, ZHANG B, SORGELOOS P. *Artemia tibetiana*: preliminary characterization of a new *Artemia* species found in Tibet (People's Republic of China) [J]. International journal of salt lake research, 1998, 7:41–44.
- [5] PILLA E J S, BEARDMOREE J A. Genetic and morphometric differentiation in Old World bisexual species of *Artemia* (the brine shrimp) [J]. Heredity, 1994, 73: 47–56.
- [6] KELLOGG V A. A new Artemia and its life conditions[J]. Science, 1906, 24: 594–596.
- [7] PICCINELLI M, PROSDOCIMI T. Descrizione tassonomica delle due species *Artemia salina* L. *Artemia persimilis* n. sp[J]. Rendiconti istituto lombardo scienze e lettere, 1968, 102: 170–179.
- [8] BARIGOZZI C. Artemia: a survey of its significance in

genetic problems[J]. Evolutionary biology, 1974:221-252.

- [9] 赵光平. 卤虫种质的建立及其生物学特性的研究[D]. 天津:天津科技大学,2014.
- [10] HEBERT P D N, RATNASINGHAM S, WAARD J R. Barcoding animal life: cytochrome C oxidase subunit 1 divergences among closely related species[J]. Biological sciences, 2003, 270(1): 96–99.
- [11] HEBERT P D N, CYWINSKA A, BALL S L, et al. Biological identifications through DNA barcodes[J]. Biological sciences, 2003, 270 (1512) : 313–321.
- [12] HOU L, BI X D, ZOU X Y, et al. Molecular systematics of bisexual *Artemia* populations[J]. Aquaculture research, 2006, 37 (7): 671–680.
- [13] WANG W W, LUO Q B, GUO H Y, et al. Phylogenetic analysis of brine shrimp (*Artemia*) in China using DNA barcoding[J]. Genomics, proteomics & bioinformatics, 2008, 6 (3/4) : 155–162.
- [14] MACCARI M, AMAT F, GOMEZ A. Origin and genetic diversity of diploid parthenogenetic *Artemia* in Eurasia[J]. PLOS ONE, 2013, 8 (12) : 1–13.
- [15] COLEMAN A W. ITS2 is a double-edged tool for eukaryote evolutionary comparisons[J]. Trends in genetics, 2003, 19 (7): 370-375.
- [16] COLEMAN A W. *Paramecium aurelia* revisited[J]. Journal of eukaryotic microbiology, 2005, 52(1):68–77.
- [17] EIMANIFAR A, VAN STAPPEN G, MARDEN B, et al. Artemia biodiversity in Asia with the focus on the phylogeography of the introduced American species Artemia franciscana Kellogg, 1906[J]. Molecular phylogenetics and evolution, 2014, 79: 392–403.
- [18] KAPPAS I, BAXEVANIS A D, MANIATSI S, et al. Porous genomes and species integrity in the branchiopod *Artemia*[J]. Molecular phylogenetics and evolution, 2009, 52(1):192–204.
- [19] BAXEVANIS A D, KAPPAS I, ABATZOPOULOS T J. Molecular phylogenetics and asexuality in the brine shrimp *Artemia*[J]. Molecular phylogenetics and evolution, 2006, 40 (3) : 724–738.
- [20] YIN H, GUAN N, FU Y T. Molecular phylogeny of bisexual Artemia based on 16S rDNA [J]. Agricultural biotechnology, 2011, 12 (5): 659–662.

- [21] TAMURA K, STECHER G, PETERSON D. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular biology and evolution, 2013, 30(12):2725– 2729.
- [22] KIMURA M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences [J]. Journal of molecular evolution, 1980, 16 (2) : 111–120.
- [23] CROZIER T H, CROZIERY C. The mitochondrial genome of the honeybee *Apis mellifera*: complete sequence and genome organization [J]. Genetics, 1993, 33 (1):97– 117.
- [24] SIMON C, FRATI F, BECKENBACH A, et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequence and a complication of conserved polymerase chain reaction primers[J]. Annals of the entomological society of America, 1994, 87 (6) : 651–701.
- [25] TAMURA K, NEI M, KUMAR S. Prospects for inferring very large phylogenies by using the Neighbor-Joining method [J]. Proceedings of the national academy of sciences, 2004, 101 (30) : 11030–11035.
- [26] BROWN W M, PRAGER E M, WANG A, et al. Mitochondrial DNA sequences of primates: tempo and mode of evolution[J]. Journal of molecular evolution, 1982, 18(4):225-239.
- [27] VAWTER L, BROWN W E. Rates and patterns of base change in the small subunit ribosomal RNA gene[J]. Genetics, 1993, 134 (2) : 597–608.
- [28] VIGILANT L, STONEKING M, HARPENDING H, et al. African populations and the evolution of human mitochondrial DNA[J]. Science, 1991, 253 (5027) : 1503– 1507.
- [29] 邹山梅. 新腹足目贝类 DNA 条形码系统构建及系统 发育研究[D]. 青岛:中国海洋大学,2013.
- [30] ALIREZA A, EIMANIFAR A, SUN S C. Genetic variation and evolutionary origins of parthenogenetic *Artemia* (crustacea : anostraca) with different ploidies[J].
 Zoologica scripta, 2016, 45 (4) : 421–436.
- [31] BARIGOZZI C. Genus Artemia: problems of systematic[M]// PERSOONE G, SORGELOOS P, ROELS O, et al. The brine shrimp Artemia. Wetteren: Universa Press, 1980: 147–153.

责任编辑:郎婧