

DOI:10.13364/j.issn.1672-6510.20190300

15℃硼酸锂–硼酸钾–硼酸镁–水体系 相平衡与相图

郑志伟¹,顾 鹏¹,王士强^{1,2},郭亚飞^{1,2},邓天龙^{1,2} (1. 天津科技大学化工与材料学院,天津 300457; 2. 天津市海洋资源与化学重点实验室,天津 300457)

摘 要:采用等温溶解平衡法研究四元体系硼酸锂-硼酸钾-硼酸镁-水 15℃时固液相平衡,测定了体系溶解度和平衡液相的密度、折光率.研究发现:该体系 15℃稳定相图中包含一个共饱点(L+Li₂B₄O₇·3H₂O+K₂B₄O₇·4H₂O+Mg₂B₆O₁₁·15H₂O),其液相组成为 w(Li₂B₄O₇)1.31%、w(K₂B₄O₇)10.57%、w(MgB₄O₇)0.05%;3 个固相结晶区为 Li₂B₄O₇·3H₂O、K₂B₄O₇·4H₂O、体系无复盐或固溶体生成.溶液中硼酸锂、硼酸钾对多水硼镁石有很强的盐析效应,液相的密度和折光率随溶液中硼酸锂浓度的增加呈有规律的变化.采用经验公式对密度和折光率进行 关联,计算值和实验值吻合较好.

关键词:固液相平衡;溶解度;水盐体系;多水硼镁石 中图分类号:TQ128.5 文献标志码:A 文章编号:1672-6510(2021)02-0015-05

Phase Equilibrium and Phase Diagram of Lithium Borate-Potassium Borate-Magnesium Borate-Water System at 15 °C

ZHENG Zhiwei¹, GU Peng¹, WANG Shiqiang^{1,2}, GUO Yafei^{1,2}, DENG Tianlong^{1,2}

(1. College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China; 2. Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457, China)

Abstract: The phase equilibrium of the quaternary system of lithium borate-potassium borate-magnesium borate-water has been studied at 15 °C with the method of isothermal solution saturation. Solubility, density and refractive index were analyzed. Phase diagram of this system contains one invariant point (L+Li₂B₄O₇·3H₂O+K₂B₄O₇·4H₂O+Mg₂B₆O₁₁·15H₂O) whose liquid compositions are $w(Li_2B_4O_7) 1.31\%$, $w(K_2B_4O_7) 10.57\%$, $w(MgB_4O_7) 0.05\%$; and three crystallization regions correspond to Li₂B₄O₇·3H₂O, K₂B₄O₇·4H₂O and Mg₂B₆O₁₁·15H₂O, respectively. Neither double salts nor solid solutions formed in this system, and both K₂B₄O₇ and Li₂B₄O₇ in the solution have a strong salting-out effect on inderite. The solution density and refractive index of the quaternary system changed regularly with the increase of Li₂B₄O₇ concentration. The density and refractive index calculated with empirical equations can well match those in the experiment.

Key words: stable phase equilibrium; solubility; salt-water system; inderite

硼及其化合物是重要的无机盐产品,在农业、玻 璃、陶瓷、冶金和医药等行业中都有广泛的应用^[1],硼 资源的开发利用对于现代工业的发展具有越来越重 要的作用.随着国民经济的发展,硼的需求量持续增 长,供求矛盾十分突出,盐湖卤水资源中蕴含着丰富 的硼,储量约占全国储量的 50%,成为我国最重要的 硼资源基地^[2-3].盐湖无机盐资源作为我国的战略性 资源,对其进行有效开发利用离不开水盐体系相图的 理论指导.

对于硼酸盐体系的研究主要集中于 B₄O₅(OH)²⁻、

基金项目:国家自然科学基金资助项目(U1707602,U1507109);天津市自然科学基金资助项目(17JCYBJC19500)

作者简介:郑志伟(1995—),男,辽宁大连人,硕士研究生;通信作者:王士强,研究员,wangshiqiang@tust.edu.cn

收稿日期: 2019-12-17; 修回日期: 2020-01-15

 $B_{3}O_{6}(OH)_{4}^{-}$ 、 $B_{6}O_{7}(OH)_{6}^{2-}$ 以及 $B(OH)_{4}^{-}$,并以 $B_{4}O_{7}^{2-}$ 的 相化学研究最为系统和深入. 毕渭滨等^[4]、Meng 等^[5] 研究在 MgSO₄或 MgCl₂达到一定浓度时,三方硼镁 石 (MgB₆O₁₀·7.5H₂O)可以在该体系中稳定存在. Guo 等^[6]研究三元体系 MgCl₂-MgB₂O₄-H₂O 稳定相平 衡,测定了偏硼酸镁的溶解度,三水合偏硼酸镁 (MgB₂O₄·3H₂O)可以在该体系中稳定存在. 靳治良 等^[7]、景婧等^[8]、Fu 等^[9]、桑世华等^[10]、Tan 等^[11]分别 开展了三元体系 K⁺, Mg²⁺// $B_{4}O_{7}^{2-}$ -H₂O 以及四元体 系 Li⁺, K⁺, Mg²⁺// borate-H₂O 稳定相平衡研究,测定 了章氏硼镁石 (MgB₄O₇·9H₂O) 在没有发生转化时的 溶解度数据.

孙柏等^[12]发现在一定条件下,三方硼镁石 (MgB₆O₁₀·7.5H₂O)和章氏硼镁石(MgB₄O₇·9H₂O)会 发生转化.本实验课题组开展了一系列镁硼酸盐体 系相平衡与相图研究^[13-16],进一步探究镁硼酸盐在 溶液中的稳定存在形式.实验证明,在相同温度下多 水硼镁石的溶解度小于三方硼镁石和章氏硼镁石,多 水硼镁石在溶液中可以稳定存在,且不发生转化,因 此对转化后的多水硼镁石进行研究对含硼卤水资源 的开发利用有着重要意义.柴达木盆地盐湖区夏季 平均气温在 15℃,因此本实验以多水硼酸镁为研究 对象,开展四元体系硼酸锂-硼酸钾-硼酸镁-水体系 在 15℃时相平衡与相图研究,测定其溶解度数据及 溶液的密度和折光率等物化性质,为探索镁硼酸盐存 在形式及硼酸盐分离提取提供理论依据.

1 材料与方法

1.1 原料与仪器

Li₂B₄O₇·3H₂O_xK₂B₄O₇·4H₂O 等试剂均为分析纯 试剂,购自国药集团化学试剂有限公司;Mg₂B₆O₁₁· 15H₂O,使用 MgO 和 H₃BO₃在实验室进行合成^[17], 并经化学组成分析和 X 射线粉晶衍射鉴定,纯度 \geq 99.0%;实验用水均为去离子水,电导率 $< 1.0 \times 10^{-4}$ S/m,用于配制实验平衡溶液和分析所用的标准液.

HXG-500-8A 型恒温水浴磁力搅拌槽,北京惠 城佳仪,控温精度±0.01℃;DMA4500 型高精度密 度计,奥地利安东帕公司,精度±0.00002g/cm³; Abbemat 550 型高精度折光率仪,奥地利安东帕公 司,精度±0.0002;Aquapro 纯水机,重庆颐洋企业发 展有限公司;MSALXD-3 型 X 射线粉晶衍射仪,北 京普析通用仪器公司.

1.2 实验方法

采用等温溶解平衡法^[18],从三元体系饱和点梯 度加入另一种盐.例如:从三元体系 Li₂B₄O₇-K₂B₄O₇-H₂O 的共饱点 *A* 梯度加入硼酸镁配制一系 列复体点于 200 mL 玻璃瓶中,将配好的溶液放置于 恒温水浴磁力搅拌槽,水浴温度控制在(15 ± 0.01) \mathbb{C} ,以 100~200 r/min 转速进行搅拌;搅拌一定 时间后静置澄清,定期取液相进行化学分析,以溶液 中化学组成不变即达到溶解平衡.固液平衡后分析 液相组成,测定溶液的密度、折光率,并采用 XRD 进 行固相鉴定.

1.3 分析方法

硼的浓度采用改进的甘露醇质量法进行分析,相 对误差 < $\pm 0.05\%$; Mg²⁺采用 EDTA 络合滴定法进行 分析,相对误差 < $\pm 0.3\%$; K⁺采用四苯硼化钠质量法 进行分析,相对误差 < $\pm 0.05\%$; Na⁺采用 ICP-OES 法进行分析,相对误差 < $\pm 0.5\%$.

2 结果与讨论

2.1 稳定相平衡溶解度及相图

四元体系硼酸锂-硼酸钾-硼酸镁-水在 15 ℃时 液相组成和溶液密度、折光率等测定结果见表 1,并 根据组分的干基指数绘制了该体系 15℃等温相图 (图 1)和水含量图(图 2).干基指数 J_b是体系中各组 分占干盐总质量的百分数.

由表 1 和图 1 可知:该四元体系 15℃相图有一 个共饱点 E(L + Li₂B₄O₇·3H₂O + K₂B₄O₇·4H₂O + $Mg_2B_6O_{11}$ ·15H₂O),其液相组成为 w(Li₂B₄O₇) = 1.31%, $w(K_2B_4O_7) = 10.57\%$, $w(MgB_4O_7) = 0.05\%$. 体系有 3 条溶解度曲线: AE 曲线为 K₂B₄O₇·4H₂O 和 Li₂B₄O₇·3H₂O 共饱和溶解度曲线, BE 曲线为 K₂B₄O₇·4H₂O 和 Mg₂B₆O₁₁·15H₂O 共饱和溶解度曲 线, CE 曲线为 Li₂B₄O₇·3H₂O 和 Mg₂B₆O₁₁·15H₂O 共 饱和溶解度曲线. 体系有 3 个固相结晶区,分别为 K₂B₄O₇·4H₂O、Mg₂B₆O₁₁·15H₂O、Li₂B₄O₇·3H₂O,结晶 区面积大小为 Mg₂B₆O₁₁·15H₂O>Li₂B₄O₇·3H₂O> K₂B₄O₇·4H₂O,体系中 Li₂B₄O₇和 K₂B₄O₇对多水硼镁 石有很强的盐析效应. 体系中存在的硼氧络阴离子 $[B_4O_5(OH)_4]^{2-}$ 、 $[B_3O_3(OH)_5]^-$ 、 $[B_5O_6(OH)_4]^-$ 以及 [B₆O₇(OH)₆]²⁻,其结构形式复杂,不易与阳离子和其 他阴离子形成任何形式的复盐和固溶体,因而该四元 体系中存在平衡固相只有简单硼酸盐的结晶形式.

	表 1 15 U凹元体系硼酸锂-硼酸钾-硼酸镁-水溶解度及半衡液相密度、折光率测定值
Tab. 1	Solubility , density and refractive index of the quaternary system of lithium borate-potassium borate-magnesium
	borate-water at 15 °C

序号 -	平衡液相组成 w/%				干基指数 Jb/%			密度 ρ/	七业应	亚盔田坦
	$Li_2B_4O_7$	$K_2B_4O_7$	$Mg_2B_6O_{11}$	H_2O	$Li_2B_4O_7$	$K_2B_4O_7$	H_2O	$(g \cdot cm^{-3})$	扒兀平	干倒凹相
1, A	1.40	9.61	0.00	88.99	12.72	87.28	808.5	1.094 51	1.351 4	LB + KB
2	1.19	9.49	0.00	89.32	11.11	88.86	836.0	1.097 57	1.351 4	LB + KB
3	1.21	8.28	0.01	90.50	12.70	87.17	952.7	1.084 45	1.349 7	LB + KB
4	1.16	8.72	0.02	90.10	11.72	88.09	909.7	1.089 10	1.350 4	LB + KB
5	1.20	8.45	0.02	90.33	12.41	87.35	933.6	1.086 26	1.350 1	LB + KB
6, B	0.00	10.66	0.03	89.31	0.00	99.75	835.9	1.095 20	1.350 4	KB + MB
7	0.39	9.49	0.03	90.09	3.94	95.75	909.2	1.096 46	1.351 0	KB + MB
8	0.80	9.85	0.04	89.31	7.47	92.15	835.7	1.097 77	1.351 8	KB + MB
9, <i>C</i>	2.88	0.00	0.02	97.10	99.44	0.00	3370.3	1.031 30	1.341 0	LB + MB
10	3.38	0.64	0.02	95.96	83.56	15.90	2373.9	1.036 83	1.342 9	LB + MB
11	3.57	1.98	0.02	94.43	64.00	35.56	1691.6	1.048 38	1.344 1	LB + MB
12	3.61	4.20	0.03	92.16	46.01	53.59	1175.0	1.054 27	1.346 5	LB + MB
13	2.39	5.50	0.03	92.08	30.14	69.50	1162.7	1.060 50	1.345 9	LB + MB
14	1.79	6.57	0.03	91.61	21.32	78.29	1090.9	1.070 60	1.347 6	LB + MB
15	1.65	7.00	0.03	91.32	19.04	80.58	1050.8	1.074 04	1.348 2	LB + MB
16, <i>E</i>	1.31	10.57	0.05	88.07	10.96	88.62	738.6	1.102 10	1.352 8	LB + KB + MB

注: LB 表示 Li₂B₄O₇·3H₂O; KB 表示 K₂B₄O₇·4H₂O; MB 表示 Mg₂B₆O₁₁·15H₂O.

由表 1 和图 2 可见,该四元体系中水含量呈现规 律性变化,在 C 点水含量最大,在 CE 溶解度曲线 上,水的含量急剧减小,在共饱点 E 处达到最小值. 在 AE 和 BE 溶解度曲线上,水的含量变化较小.结 合等温相图和水含量图可以完整地描述体系中某一 点的相态.

对该体系析出的平衡固相进行 X 射线粉晶衍射 鉴定(如图 3 所示),其特征峰与 $Li_2B_4O_7 \cdot 3H_2O_x$ $Mg_2B_6O_{11} \cdot 15H_2O_xK_2B_4O_7 \cdot 4H_2O$ 吻合较好,表明体系 存在的稳定平衡固相为 $Li_2B_4O_7 \cdot 3H_2O_xK_2B_4O_7 \cdot$ $4H_2O_xMg_2B_6O_{11} \cdot 15H_2O,多水硼镁石并未发生转化.$

将本文研究的该四元体系 15 ℃相图与文献报道 的 0 ℃、75 ℃相图^[10-11]进行对比,不同温度时共饱点 处液相组成和平衡固相见表 2,相图比较如图 4 所示. 由表 2 和图 4 可知:在体系共饱点处平衡液相的组成 含量随着温度的升高而增大,该四元体系在不同温度 下硼酸锂和硼酸钾结晶形式相同,均为 Li₂B₄O₇· 3H₂O、K₂B₄O₇·4H₂O,而硼酸镁的结晶形式则不同,在 0 ℃和 75 ℃体系中为章氏硼镁石(MgB₄O₇·9H₂O), 15 ℃体系中为多水硼镁石(Mg₂B₆O₁₁·15H₂O).多水 硼镁石的溶解度小于章氏硼镁石,其结晶区大于章氏 硼镁石,因而可利用不同类型镁硼酸盐溶解度差别来 分离硼酸镁.

- 表 2 四元体系硼酸锂-硼酸钾-硼酸镁-水不同温度共饱 点处液相组成
- Tab. 2
 Solubilities of the quaternary system of lithium borate-potassium borate-magnesium borate-water in the invariant point at different temperatures

温度/	:	液相组成/%	亚海田相	粉捉亚酒	
°C	$Li_2B_4O_7$	$K_2B_4O_7$	MgB ₄ O ₇	干預凹相	<u> </u>
0	1.49	10.28	0.14	LB + KB + MB1	文献[10]
15	1.31	10.57	0.05	LB + KB + MB2	本文
75	6.44	40.19	7.31	LB + KB + MB1	文献[11]

注: LB 表示 Li₂B₄O₇·3H₂O; KB 表示 K₂B₄O₇·4H₂O; MB1 表示 MgB₄O₇·9H₂O; MB2 表示 Mg₂B₆O₁₁·15H₂O.

- 图 4 四元体系硼酸锂-硼酸钾-硼酸镁-水在 0℃、75℃ 与 15℃对比相图
- Fig. 4 Comparison of the phase diagram of the quarternary system of lithium borate-potassium boratemagnesium borate-water at 0 °C, 75 °C and 15 °C

2.2 物化性质-组成关系

由表1中测定的平衡溶液的密度和折光率数据, 绘制出该体系的密度-组成图和折光率-组成图,结 果如图5所示.

图 5 四元体系硼酸锂-硼酸钾-硼酸镁-水 15℃溶液密度、折光率与液相组成图

Fig. 5 Diagram of the density and refractive index of the quaternary system of lithium borate-potassium borate-magnesium borate at 15 °C vs. composition

由图 5 可知:体系溶液的密度在溶解度曲线 AE、BE 上,随 Li₂B₄O₇ 干基指数增加呈逐步增大趋势,在共饱点 E 达到最大值 1.102 10 g/cm³;在溶解度 曲线 EC 上,随 Li₂B₄O₇ 干基指数增加呈极剧减小趋势,由 1.102 10~1.031 30 g/cm³.体系溶液的折光率 变化趋势与密度变化趋势相似,在共饱点 E 达到最 大值 1.352 8.

2.3 平衡液相密度与折光率理论计算

根据经验公式对该体系在 15 ℃时的平衡溶液的 密度和折光率进行理论计算^[19-20].由测得的密度、折 光率计算方程的特征参数,并用相应参数可计算出密 度、折光率的理论值.

$$\ln(\rho_{\rm t}/\rho_0) = \sum A_i w_i \tag{1}$$

$$\ln \frac{n_{Dt}}{n_{D0}} = \sum B_i w_i \tag{2}$$

式中: ρ_0 为纯水密度, 15 °C时 $\rho_0 = 0.999 09 \text{ g/cm}^3$; n_{D0} 为纯水折光率, 15 °C时 $n_{D0} = 1.333 39^{[21]}$; ρ_t 为各点液 相密度; n_{Dt} 为各点液相折光率; w_i 为第 *i* 种盐的质量 分数; A_i 为该体系溶液密度系数; B_i 为该体系溶液折 光率系数.

计算得到的该体系 Li₂B₄O₇、K₂B₄O₇和 Mg₂B₆O₁₁的密度系数 A_i分别为 0.010 68、0.007 79、 0.009 61, 折光率系数 B_i分别为 0.002 28、0.001 01、 0.002 33, 由此计算得到密度和折光率理论值. 密度 最大相对偏差为 0.30%, 折光率最大相对偏差为 0.09%, 计算值与实验值吻合较好.

3 结 论

采用等温溶解平衡法研究四元体系硼酸锂-硼酸 钾-硼酸镁-水在 15℃时相平衡与相图,测定了体系 溶解度和平衡液相的密度、折光率.研究表明:

(1)该四元体系 15 ℃稳定相图中包含一个共饱 点、3 条溶解度曲线和 3 个固相结晶区. 其结晶区分 别为 Li₂B₄O₇·3H₂O、K₂B₄O₇·4H₂O、Mg₂B₆O₁₁· 15H₂O,多水硼镁石(Mg₂B₆O₁₁·15H₂O)是一种稳定的 镁硼酸盐,体系无固溶体和复盐生产.

(2)通过比较该四元体系不同温度下相图可以发现:体系中硼酸锂和硼酸钾的固相结晶形式相同,而 硼酸镁的结晶形式不同,多水硼镁石的结晶区大于章 氏硼镁石.

(3)平衡液相的密度、折光率随液相组成变化而 呈现规律性的变化,且密度和折光率在共饱点处达到 最大值.运用经验公式计算平衡液相的密度和折光 率,与实验测得的数据进行对比,二者吻合较好.

参考文献:

- [1] 郑学家. 硼及硼酸盐产品开发和应用前景[J]. 无机盐 工业,2005,37(4):1-3.
- [2] 林勇杰,郑绵平,刘喜方. 青藏高原盐湖硼矿资源[J].
 科技导报,2017,35(12):77-82.
- [3] 郑绵平,侯献华.青海盐湖资源综合利用与可持续发 展战略[J].科技导报,2017,35(12):11-13.
- [4] 毕渭滨,孙柏,宋彭生,等. 三元体系 Mg²⁺/SO₄²⁻, B₆O₁₀²⁻-H₂O 25 ℃ 相关系和溶液性质的研究[J]. 盐湖 研究,1997,5(3/4):42-46.
- [5] Meng L Z, Li D. Solid-liquid stable phase equilibrium of the ternary systems MgCl₂ + MgB₆O₁₀ + H₂O and MgSO₄ + MgB₆O₁₀ + H₂O at 308.15 K[J]. Brazilian Journal of Chemical Engineering, 2014, 31 (1) : 251–258.
- Guo Y F, Sun S R, Gao D L, et al. Phase equilibrium and phase diagram of the ternary system (MgCl₂ + MgB₂O₄ + H₂O) at 288 and 298 K[J]. Acta Geologica Sinica : English Edition, 2014, 88 (S1) : 326–327.
- [7] 靳治良,孙柏,李刚,等. 三元体系 K⁺, Mg²⁺ // B₄O₇²⁻ H₂O 25 ℃相关系研究[J]. 盐湖研究,2004,12(2):19-22.
- [8] 景婧,曾英,于旭东,等. 三元体系 K⁺, Mg²⁺// B₄O₇²⁻ H₂O 348 K 稳定相平衡研究 [J]. 矿物岩石, 2013, 33(1):116-120.
- [9] Fu C, Sang S H, Zhou M F, et al. Phase equilibria in the

ternary systems $Li_2B_4O_7-MgB_4O_7-H_2O$ and $K_2B4O_7-MgB_4O_7-H_2O$ at 273 K[J]. Journal of Chemical and Engineering Data, 2016, 61: 1071–1077.

- [10] 桑世华,张婷婷,傅超,等.四元体系 Li⁺,K⁺,Mg²⁺/ B₄O₇²⁻-H₂O 273 K 相平衡研究[J].化工学报,2017, 68(9):3343-3349.
- [11] Tan Q, Zeng Y, Mu P T, et al. Stable phase equilibrium of aqueous quaternary system Li⁺, K⁺, Mg²⁺//borate-H₂O at 348 K[J]. Journal of Chemical and Engineering Data, 2014, 59: 4173–4178.
- [12] 孙柏,宋彭生. 某些镁硼酸盐溶解及相转化的研究[J]. 盐湖研究,1999,7(2):16-22.
- $\begin{bmatrix} 13 \end{bmatrix} WangH, Li L, Wang M X, et al. Solid-liquid phase equilibrium of the aqueous ternary system (MgSO₄+ Mg₂B₆O₁₁+H₂O) at (288.15, 298.15, 308.15) K[J]. Journal of Chemical and Engineering Data, 2017, 62 (10) : 3334–3340.$
- [14] 杜雪敏,王士强,景妍,等. Na₂B₄O₇-Mg₂B₆O₁₁-H₂O 体 系 298.15 K 时固液相平衡研究[J]. 天津科技大学学 报,2017,32(4):36-40.
- $\begin{bmatrix} 15 \end{bmatrix} Wang S Q, Du X M, Jing Y, et al. Solid-liquid phase equilibrium in the ternary systems (Li₂B₄O₇+MgB₄O₇+H₂O) and (Na₂B₄O₇+MgB₄O₇+H₂O) at 298.15 K [J]. Journal of Chemical and Engineering Data, 2017, 62:253–258.$
- [16]景妍,王士强,韩徐年,等.三元体系 Li₂B₄O₇ Mg₂B₆O₁₁-H₂O 在 308.15 K 时固液相平衡研究[J].化
 学工程,2016,44(3):36-40.
- [17] 李飞,张思思,郭亚飞,等. 多水硼镁石快速合成方法 [J]. 中国科技论文,2014,9(9):1080–1082.
- [18] 邓天龙,周桓,陈侠. 水盐体系相图及应用[M]. 北京: 化学工业出版社,2013.
- [19] 林联君,房春晖,房艳,等. 一个预测溶液密度的新模型[J]. 盐湖研究,2006,14(2):56-61.
- [20] 房春晖. 一个预测盐湖卤水密度的新的理论模型:盐 湖化学基础理论研究之一[J]. 盐湖研究, 1990(2): 15-20.
- [21] Speight J M. Lange's Handbook of Chemistry [M]. New York: McGeaw-Hill, 2005.

责任编辑:周建军