

天津科技大学学报 Journal of Tianjin University of Science & Technology

反射几何布朗运动的两个结果

张立东¹, 孟祥波¹, 孙成功¹, 杜子平² (1. 天津科技大学理学院, 天津 300457; 2. 天津科技大学经济与管理学院, 天津 300222)

摘要:主要讨论反射几何布朗运动.首先通过采用马氏过程无穷小生成元的方法得到反射几何布朗运动的平稳分布,最后对该过程的首中时问题进行了讨论,得到该首中时的拉普拉斯变换.
 关键词:反射几何布朗运动;平稳分布;首中时
 中图分类号: O211.6 文献标志码: A 文章编号: 1672-6510(2010)01-0070-03

Two Results on Reflected Geometric Brownian Motion

ZHANG Li-dong¹, MENG Xiang-bo¹, SUN Cheng-gong¹, DU Zi-ping²

(1. College of Science, Tianjin University of Science & Technology, Tianjin 300457, China;

2. College of Economics and Management, Tianjin University of Science & Technology, Tianjin 300222, China)

Abstract: Reflected Geometric Brownian Motion (RGBM) was discussed in this paper. The stationary distribution of RGBM was deduced by Markovian infinitesimal generator method. Consequently the first passage time of RGBM was also discussed and its Laplace transform was obtained.

Keywords: Reflected Geometric Brownian Motion; stationary distribution; first passage time

文献[1-2]主要讨论系统容量不受限制的流体排队模型,本文讨论系统最大容量为d的线性流体排队模型,此数学模型的详细解释如下: Z_t 表示t时刻系统中流体容量,流体以速率 $\alpha_t Z_t$ 到达系统,以速率 $\alpha_2 Z_t$ 离开系统,系统容量被布朗运动 B_t 所扰动,扰动系数为 σZ_t , U_t 使得系统容量 Z_t 保持在 0 和d之间(详细阐述见 1.1).根据随机微分方程理论知道 Z_t 满足:

$$\begin{cases} dZ_t = (\alpha_1 - \alpha_2)Z_t dt + \sigma Z_t dB_t - dU_t \\ Z_0 = x \in (0, d] \end{cases}$$

因为当 $d \to +\infty$,上述方程所确定的过程实际上 是几何布朗运动,故上述随机过程 Z_i 被称为反射几何 布朗运动.

本文主要分成两部分来研究反射几何布朗运动, 首先给出反射几何布朗运动确切定义,然后利用文献 [3-4]中所提供的方法求出了反射几何布朗运动的平 稳分布和首中时的拉普拉斯变换.

1 反射几何布朗运动

定义 1 将由下列方程决定的随机过程 *Z* = {*Z*_{*t*}, *t* ≥ 0} 称为反射几何布朗运动:

$$\begin{cases} dZ_t = \mu Z_t dt + \sigma Z_t dB_t - dU_t \\ Z_0 = x \in (0, d] \end{cases}$$
(1)

其中 B_{μ} 是一维标准布朗运动, $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}^+$,并且 σ^2

$$u > \frac{\sigma}{2}$$

U, 具有下列两条性质:

1. U_t是连续单调增过程且初值为零.

2. $\int_{0}^{t} I_{\{Z_{s}=d\}} dU_{s} = U_{t}, t \ge 0$.

由随机微分方程理论知道式(1)等价于下列 方程:

$$Z_{t} = x + \mu \int_{0}^{t} Z_{s} ds + \sigma \int_{0}^{t} Z_{s} dB_{s} - U_{t} \in (0, d]$$
(2)

收稿日期: 2009-02-18; 修回日期: 2009-04-15

基金项目:国家自然科学基金资助项目(70671074);天津科技大学科学研究基金资助项目(20080207)

作者简介:张立东(1979—),男,河北玉田人,讲师,zhanglidong@tust.edu.cn.

2 主要结果

2.1 反射几何布朗运动平稳分布

为了得到反射几何布朗运动的平稳分布,我们先 得到反射几何布朗运动的无穷小生成元.

$$Af(x) = \frac{\sigma^2 x^2}{2} f''(x) + \mu x f'(x), x \in (0, d], f \in D(A)$$

其中

 $D(A) = \{f : f \text{和}Af \text{ 是定义在}(0, d] 上的可测函$ $数, 并且 f'(d) = 0和 \int_{0}^{t} |Af(Z_{s})| ds < \infty a.s. \}$

证明 任意取定 *f* ∈ *D*(*A*), 对 *Z_t*应用伊藤公式有

$$f(Z_t) = f(Z_0) + \int_0^t f'(Z_s) dZ_s + \frac{1}{2} \int_0^t f''(Z_s) d < Z, Z >_s =$$

 $f(Z_0) + \int_0^t \left[\frac{\sigma^2 Z_s^2}{2} f''(Z_s) + \mu Z_s f'(Z_s) \right] ds -$
 $\int_0^t f'(Z_s) dU_s + \sigma \int_0^t Z_s f'(Z_s) dB_s$

利用 U_t 的性质: $\int_0^t f'(Z_s) dU_s = f'(d)U_t$ 和f'(d) = 0, 有 $f(Z_t) = f(Z_0) + \int_0^t \left[\frac{\sigma^2 Z_s^2}{2} f''(Z_s) + \mu Z_s f'(Z_s) \right] ds +$

$$\sigma \int_{a}^{b} Z_{s} f'(Z_{s}) \mathrm{d}B_{s}$$

求反射几何布朗运动的无穷小算子:

$$Af(x) := \lim_{t \to 0} \frac{E_x f(Z_t) - E_x f(Z_0)}{t} = \frac{\sigma^2 x^2}{2} f''(x) + \mu x f'(x)$$

x \in (0, d), f \in D(A)

利用文献[5]中结果易推知反射几何布朗运动平 稳分布概率密度必须满足

$$\int_0^d Af(x)p(x)dx = 0, f \in D(A).$$

定理1给出反射几何布朗运动的平稳分布.

定理 1
$$p(x) = \frac{\frac{2\mu}{\sigma^2} - 1}{d^{\frac{2\mu}{\sigma^2} - 1}} x \in (0, d]$$
并且满足

$$\int_0^a Af(x)p(x)dx = 0, f \in D(A), \text{ it m}$$

$$p(x) = \begin{cases} \frac{2\mu}{\sigma^2} - 1 x^{\frac{2\mu}{\sigma^2}}, 0 < x < d \\ \frac{2\mu}{\sigma^2}, 0 < x < d \\ 0, \pm \text{th} \end{cases}$$

是反射几何布朗运动平稳分布π的概率密度.

证明 对于任意给定的 f ∈ D(A), 通过直接计算

不难得到
$$\int_{0}^{d} Af(x)p(x)dx = 0$$
.
任意取定 $f \in D(A)$, 由 Dynkin 公式有
 $E_{x}[f(Z_{t})] = f(x) + E_{x}\left[\int_{0}^{t} Af(Z_{s})ds\right]$
 $E_{\pi}[f(Z_{t})] = \int_{0}^{d} f(x)\pi(dx) + E_{\pi}\left[\int_{0}^{t} Af(Z_{s})ds\right]$
因为, $E_{x}Af(Z_{s}) = AE_{x}f(Z_{s})$,所以
 $E_{\pi}\left[\int_{0}^{t} Af(Z_{s})ds\right] = \int_{0}^{t} E_{\pi}Af(Z_{s})ds =$
 $\int_{0}^{t} \int_{0}^{d} AE_{x}f(Z_{s})\pi(dx)ds = 0$
因此 $E_{\pi}[f(Z_{t})] = \int_{0}^{d} f(x)\pi(dx) + \int_{0}^{t} \int_{0}^{t} Af(Z_{s})\pi(dx)ds = 0$

因此, $E_{\pi}[f(Z_t)] = \int_{0}^{\infty} f(x)\pi(dx)$. 也就是 $\pi(dx) = p(x)dx$ 是反射几何布朗运动的平稳分布.

2.2 反射几何布朗运动首中时

首先定义 Z, 的首中时:

$$T(y) \coloneqq \inf\{t \ge 0 : Z_t = y\}, y \in (0, d]$$

并且规定 inf Ø =∞.

其次,对于任意给定的非负数 λ 及二次可微有界 函数 *q*,定义 λ-算子:

$$A^{(\lambda)}q(x) = \frac{\sigma^2 x^2}{2} q''(x) + \mu x q'(x) - \lambda q(x), x \in (0, d]$$

最后给出此首中时的拉普拉斯变换.

定理2 对于任意给定的非负数 λ 及 ∀*x* ∈ (0,*d*], 有下列各式成立:

$$E_x(e^{-\lambda T(y)}) = \frac{f(x)}{f(y)}, 0 < x \le y \le d$$
$$E_x(e^{-\lambda T(y)}) = \frac{g(x)}{g(y)}, 0 < y \le x \le d$$

式中

$$f(x) = x^{\frac{\sigma^2 - 2\mu + \sqrt{(\sigma^2 - 2\mu)^2 + 8\lambda\sigma^2}}{2\sigma^2}}$$
$$g(x) = x^{\frac{\sigma^2 - 2\mu + \sqrt{(\sigma^2 - 2\mu)^2 + 8\lambda\sigma^2}}{2\sigma^2}} + cx^{\frac{\sigma^2 - 2\mu - \sqrt{(\sigma^2 - 2\mu)^2 + 8\lambda\sigma^2}}{2\sigma^2}}$$

其中

$$c = \frac{\sqrt{(\sigma^{2} - 2\mu)^{2} + 8\lambda\sigma^{2}} + (\sigma^{2} - 2\mu)}{\sqrt{(\sigma^{2} - 2\mu)^{2} + 8\lambda\sigma^{2}} - (\sigma^{2} - 2\mu)} d^{\frac{\sqrt{(\sigma^{2} - 2\mu)^{2} + 8\lambda\sigma^{2}}}{\sigma^{2}}}$$

证明 对于二次可微有界函数 *q* 定义新的函数 *h*(*t*,*x*) = *e*^{-*h*}*q*(*x*),并对其关于 *Z*,应用伊藤公式有

$$h(t,Z_{t}) = h(0,Z_{0}) + \int_{0}^{t} \frac{\partial h}{\partial s}(s,Z_{s})ds + \int_{0}^{t} \frac{\partial h}{\partial Z_{s}}(s,Z_{s})dZ_{s} + \frac{1}{2} \int_{0}^{t} \frac{\partial^{2} h}{\partial Z_{s}^{2}}(s,Z_{s})d < Z, Z >_{s} = q(Z_{0}) - \int_{0}^{t} e^{-\lambda s}q'(Z_{s})dU_{s} + \sigma \int_{0}^{t} e^{-\lambda s}Z_{s}q'(Z_{s})dB_{s} + \sigma \int_{0}^{t} e^{-\lambda s}$$

$$\int_{0}^{t} e^{-\lambda s} \left[\frac{\sigma^{2} Z_{s}^{2}}{2} q''(Z_{s}) + \mu Z_{s} q'(Z_{s}) - \lambda q(Z_{s}) \right] ds =$$

$$q(Z_{0}) + \int_{0}^{t} e^{-\lambda s} A^{(\lambda)} q(Z_{s}) ds -$$

$$q'(d) \int_{0}^{t} e^{-\lambda s} dU_{s} + \sigma \int_{0}^{t} e^{-\lambda s} Z_{s} q'(Z_{s}) dB$$

取定一个停时T(y),由鞅可选时定理有

$$E_{x}\left[e^{-\lambda T(y)}q(Z_{T})\right] = q(x) - q'(d)E_{x}\left[\int_{0}^{T(y)}e^{-\lambda s}dU_{s}\right] + E_{x}\left[\int_{0}^{t}e^{-\lambda s}A^{(\lambda)}q(Z_{s})ds\right]$$

(1) 当 0 < x < y < d 时,将 q(x) 取成 f(x) 并且注意 到 $A^{(\lambda)}f(x) = 0, E_x \left[\int_0^{T(y)} e^{-\lambda s} dU_s \right] = 0, f(Z_{T(y)}) = y$,则不 难得到

$$E_x(e^{-\lambda T(y)}) = \frac{f(x)}{f(y)}$$

(2) 当 0 < y < x < d,将 q(x) 取成 g(x)并且注意到 $A^{(\lambda)}g(x) = 0, g'(d) = 0, g(Z_{T(y)}) = y$,则不难得到

(上接第38页)

- [7] Wang X, Liang C, Dai S. Facile synthesis of ordered mesoporous carbons with high thermal stability by selfassembly of resorcinol-formaldehyde and block copolymers under highly acidic conditions [J]. Langmuir, 2008,24(14):7500-7505.
- Zhou X,Qiao S,Hao N,et al. Synthesis of ordered cubic periodic mesoporous organosilicas with ultra-large pores
 Chemistry of Materials,2007,19(7):1870–1876.
- [9] Yu C, Tian B, Fan J, et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts [J]. Journal of Materials Chemistry, 2002, 124 (17) :4556–4557.
- [10] El-Safty S A, Mizukami F, Hanaoka T. General and simple approach for control cage and cylindrical mesopores, and thermal/hydrothermal stable frameworks [J]. The Journal of Physical Chemistry B, 2005, 109(19): 9255–9264.
- [11] Wang L, Fan J, Tian B, et al. Synthesis and characterization of small pore thick-walled SBA-16 templated by oligomeric surfactant with ultra-long hydrophilic chains
 [J]. Microporous and Mesoporous Materials, 2004,

$$E_x(e^{-\lambda T(y)}) = \frac{g(x)}{g(y)}$$

定理 2 所得结论即是反射几何布朗运动 Z,首中时的拉普拉斯变换.

参考文献:

- [1] Kella O, Whitt W. Linear stochastic fluid networks[J]. Journal of Applied Probability, 1999, 36:244-260.
- [2] Rabehasaina L, Sericola B. A second-order Markov-Modulated Fluid Queue with linear service rate[J]. Journal of Applied Probability, 2004, 41:758–777.
- Bo L J, Zhang L D, Wang Y J. On the first passage times of reflected O-U processes with two-sided barriers[J]. Queueing Systems, 2006, 54 (4):313–316.
- Zhang L D, Jiang C M. Stationary distribution of reflected
 O-U process with two-sided barriers [J]. Statistics &
 Probability Letters, 2009, 79 (2):177–181.
- [5] Harrison M. Brownian Motion and Stochastic Flow Systems [M]. New York: John Wiley & Sons, 1986.

67 (2/3) :135-141.

- [12] Fan J, Yu C, Gao F, et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angewandte Chemie, 2003, 42 (27) : 3146–3150.
- [13] Sakamoto Y, Kaneda M, Terasaki O, et al. Direct imaging of the pores and cages of three-dimensional mesoporous materials [J]. Nature, 2000, 408:449–453.
- [14] Kim T-W, Ryoo R, Kruk M, et al. Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time [J]. The Journal of Physical Chemistry B, 2004, 108 (31) :11480–11489.
- [15] Hwang Y K, Chang J-S, Kwon Y-U, et al. Microwave synthesis of cubic mesoporous silica SBA-16 [J]. Microporous and Mesoporous Materials, 2004, 68 (1/2/3):21– 27.
- [16] Gobin O C, Wan Y, Zhao D, et al. Mesostructured silica SBA-16 with tailored intrawall porosity Part 1:Synthesis and characterization [J]. The Journal of Physical Chemistry C, 2007, 111 (7):3053–3058.