

2017年12月

第32卷 第6期

DOI:10.13364/j.issn.1672-6510.20160142

黑曲霉 ATCC1015 催化 16α, 17α-环氧黄体酮 11α-羟基化及相关 P450 基因诱导表达

林本凤¹, 职亚飞¹, 刘晓光², 路福平¹ (1. 天津科技大学生物工程学院, 天津 300457; 2. 天津科技大学化工与材料学院, 天津 300457)

摘 要:为了定向遗传改造黑曲霉菌种,研究了黑曲霉(Aspergillus niger)ATCC1015 转化甾体 16α,17α-环氧黄体酮 活性.转化产物经过薄层层析(TLC)、高效液相色谱(HPLC)以及氢谱、碳谱分析最终确定为 11α-羟基-16α,17α-环氧 黄体酮.确定了黑曲霉 ATCC1015 11α-羟基化活性受底物 16α,17α-环氧黄体酮的诱导.鉴于真菌的甾体羟化酶属于 细胞色素 P450 酶,从黑曲霉 ATCC1015 的 P450(CYP)基因数据库中筛选出 57 个具有编码甾体羟化酶潜力的 CYP 基 因;利用实时荧光定量 PCR 确定了 2 个受甾体底物高度诱导的候选目标甾体羟化酶基因 AnA100 和 AnA154.分别构 建了 AnA100 基因和 AnA154 基因的重组酿酒酵母菌株 pYES2-AnA100 和 pYES2-AnA154,甾体转化结果显示重组 酵母菌 pYES2-An100 能够转化 16α,17α-环氧黄体酮生成 11α-羟基-16α,17α-环氧黄体酮. 关键词: 黑曲霉 ATCC1015; 11α-羟基化; 16α,17α-环氧黄体酮; 实时荧光定量 PCR 中图分类号: Q781 文献标志码: A 文章编号: 1672-6510(2017)06-0008-07

11α-Hydroxylation of 16α, 17α-Epoxy Progesterone by Aspergillus niger ATCC1015 and Induction Expression of Relevant Cytochromes P450 Genes

LIN Benfeng¹, ZHI Yafei¹, LIU Xiaoguang², LU Fuping¹

(1. College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; 2. College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China)

Abstract: The activity of *Aspergillus niger* ATCC1015 to biotransform 16α , 17α -epoxy progesterone was investigated for rational engineering of *Aspergillus niger*. The transformation product was determined as 11α -hydroxy- 16α , 17α -epoxy progesterone based on analyses of TLC, HPLC and NMR spectroscopy. In addition, the 11α -hydroxylation activities of *A. niger* ATCC1015 on 16α , 17α -epoxy progesterone were shown to be induced by substrate 16α , 17α -epoxy progesterone. Given that fungal steroid hydroxylases are members of the cytochrome P450 family, 57 CYP genes were selected as potential candidates of the target hydroxylase genes. Quantitative Real-time PCR showed that expression of 2 of 57 CYP genes named AnA100 and AnA154 were highly induced by 16α , 17α -epoxy progesterone treatment. Recombinant *S. cerevisiae* stains pYES2-AnA100 and pYES2-AnA154 were constructed with genes AnA100 and AnA154 respectively. The results of the steroidal transformation showed that recombinant *S. cerevisiae* pYES2-AnA100 can transform 16α , 17α -epoxy progesterone to 11α -hydroxylation of 16α , 17α -epoxy progesterone.

Key words: Aspergillus niger ATCC1015; 11α -hydroxylase; 16α , 17α -epoxy progesterone; Real-time PCR

甾体药物临床上主要用于治疗类风湿性关节炎、 抗病毒、抗肿瘤和生育控制,是仅次于抗生素的第二

大类药物^[1-3]. 甾体化合物的结构十分复杂,其活性 的高低多取决于特定位点的取代基. 化学合成法应

收稿日期: 2016-04-21; 修回日期: 2016-06-01

基金项目:国家高技术研究发展计划(863计划)资助项目(2011AA02A211)

作者简介:林本凤(1990—),女,山东临沂人,硕士研究生;通信作者:刘晓光,教授,liu_xg@tust.edu.cn

用于甾体化合物的合成最大局限性在于其选择性较 差^[4-5],尤其是在甾体母核的 11α位引入甾体活性所 必需的氧原子极其困难.因此工业上利用微生物转 化法在甾体化合物的 11α位特异引入羟基基 团.16α,17α-环氧黄体酮是合成重要甾体药物中间 体的原料,在其母核 11 位引入羟基可以增加溶解性 并明显增强药理活性^[6-7].至今已报道的具有甾体转 化活性的微生物多达 1 500 多种^[8],然而成功应用工 业生产的菌株并不多.因此新型菌株的筛选对于改 进甾体生物催化效率和对新型甾体药物或中间体的 大规模合成至关重要^[9-10].

已有的研究表明^[11-12]丝状真菌中参与催化甾体 羟基化反应的关键酶是一种广泛存在于生命体中的 细胞色素 P450 依赖的单加氧金属酶(cytochrome P450-dependent monooxygenases, CYP)^[13-14]. 随着分 子生物学操作手段以及基因组测序技术的快速发展, 近年来有关丝状真菌甾体转化 11α-羟化酶基因的克 隆鉴定取得了实质性进展^[15-17]. 有研究报道^[18-21]从 赭曲霉的分生孢子所构建的 cDNA 文库中克隆鉴定 了一个甾体 11α-羟化酶基因. Petric 等^[22]根据米根 霉(*R. oryzae*)全基因组序列信息,克隆鉴定了一个甾 体 11α-羟化酶基因 CYP509C12. 本文报道黑曲霉中 一个甾体 11α-羟化酶基因的克隆与鉴定,为黑曲霉 菌株的定向改造奠定基础,同时也为关键甾体羟化酶 基因的研究提供借鉴,丰富丝状真菌 P450 羟化酶基 因数据库.

1 材料与方法

1.1 菌种与培养基

黑曲霉(Aspergillus niger)ATCC1015、酿酒酵母 双倍体INVSc1,天津科技大学微生物菌种保藏中心.

PDA 培养基(g/L):土豆 200,葡萄糖 20,115 ℃ 灭菌 15 min.

黑曲霉发酵培养基(g/L):蛋白胨 20,酵母膏 20,葡萄糖 20,pH 5.8,115 ℃灭菌 15 min.

YPD 培养基(g/L):蛋白胨 20,酵母粉 10,葡萄糖 20,115 ℃灭菌 20 min.

SC 筛选培养基(g/L):无氨基酵母氮源(YNB) 6.7,葡萄糖 20,腺嘌呤 0.1,精氨酸 0.1,半胱氨酸 0.1,亮氨酸 0.1,赖氨酸 0.1,苏氨酸 0.1,色氨酸 0.1, 天冬氨酸 0.05,组氨酸 0.05,异亮氨酸 0.05,甲硫氨 酸 0.05,苯丙氨酸 0.05,脯氨酸 0.05,丝氨酸 0.05,酪 氨酸 0.05, 缬氨酸 0.05, 琼脂 20, 115 ℃灭菌 15 min.

1.2 培养与转化

用无菌水洗下 PDA 斜面培养基上的黑曲霉孢子,接入三角瓶,180 r/min、28 ℃摇床培养,8~12 h 长出菌丝球. 黑曲霉菌培养好后,加入 0.1% 的 16α, 17α-环氧黄体酮,摇晃均匀后继续放入摇床培养.

1.3 分析方法

1.3.1 转化产物的硅胶薄层层析(TLC)分析

取 1 mL 已经转化 36 h 的发酵液,加入 200 μL 乙酸乙酯充分混匀,13 000 r/min 离心 10 min. 用直 径为 0.3 mm 的毛细管取乙酸乙酯层,点样于硅胶层 析板上. 在距离硅胶板下边缘 1 cm 处用铅笔画一条 横线作为点样的基线,样品间距为 1 cm. 点好样品的 硅胶层析板轻轻放入含有展开剂(V(乙酸乙酯): V(石油醚)=1:1)的层析缸中,加盖密封,当展开剂 到距离顶端 1 cm 处,打开盖子去除薄层层板,用吹 风机吹干. 在紫外检测仪下观察层析板上样品的位 置、大小、深浅.

1.3.2 转化产物的高效液相色谱(HPLC)分析

取 1 mL 已经转化 36 h 的发酵液,加入 1 mL 乙酸乙酯充分混匀萃取,13 000 r/min 离心 5 min. 将乙酸乙酯层转移到 EP 管中,置于通风橱中晾干,用 1 mL 乙腈将晾干的残余物重新溶解,用 0.25 μm 微孔滤膜过滤后进行 HPLC 分析.

色谱条件:检测器为 Shimadau SPD 型 UV-VIS 检测器;色谱柱为 Kromasil C18(250 mm×4.6 mm, 5 μm),流动相为 V(乙腈): V(水) = 80:20;流量 1 mL/min;检测波长 241 nm;进样量 5 μL.

1.3.3 转化产物的分离纯化

用无菌水洗下 PDA 培养基中的黑曲霉孢子,并 调整孢子浓度至 $1.0 \times 10^8 \text{ mL}^{-1}$.将孢子悬液接种到 含有 250 mL 黑曲霉液体发酵培养基的三角瓶中, 28 °C、180 r/min 振荡培养,待长出丰富的菌丝体后 (约 15 h),投入 0.1%的 16 α ,17 α -环氧黄体酮. 48 h 后发酵液用等体积的乙酸乙酯萃取,旋转蒸发浓缩, 同时加入 2 g 硅胶拌样,旋转蒸发至粉末状,待用.选 取200~300 目硅胶作为层析柱填料,湿法装柱,干法 上样,洗脱剂为 V(石油醚) : V(乙酸乙酯) = 3 : 1,分离出各个产物,收集组分相同的洗脱液,旋转蒸发 得到白色固体.将分离纯化的产物和 11 α -羟基– 16 α , 17 α -环氧黄体酮标准品进行核磁鉴定.

1.4 黑曲霉 ATCC101511α-羟化酶诱导实验

将 1.0×10⁸ mL⁻¹ 黑曲霉孢子悬液 1 mL 接种于

两组装有 100 mL 黑曲霉液体发酵培养基的三角瓶中 (每组重复样品为 3 个), 28 ° 、180 r/min 振荡培 养. 待长出丰富的菌丝体后(约 15 h), 在其中一组中 加入 10 μL 蛋白质合成抑制剂放线菌酮和 0.1% 的 16α, 17α-环氧黄体酮, 另一组只加入 0.1% 的 16α, 17α-环氧黄体酮. 28 ° 、180 r/min 转化 24 h 后取 样, 按照 1.3.1 节处理分析.

1.5 黑曲霉 ATCC1015 总 RNA 的提取及 cDNA 的 合成

将 $1.0 \times 10^8 \text{ mL}^{-1}$ 黑曲霉孢子悬液 1 mL 接种于 含有 100 mL 发酵培养基的三角瓶中(A、B). 28 ℃、 180 r/min 振荡培养 15 h,向 A 三角瓶中加入 0.1% 的 16 α , 17 α -环氧黄体酮作为诱导剂,将未加诱导剂的 B 三角瓶作为对照,诱导培养 6 h 后,A、B 两瓶分别 收集菌体,以 Trizol 法提取总 RNA. 用总 RNA 提取 试剂盒(康为世纪公司)提取,再用逆转录试剂盒 (Invitrogen 公司)合成 cDNA.

1.6 黑曲霉基因信息的分析及实时荧光定量 PCR (Real-time PCR)

根据已经报道的丝状真菌 P450 羟化酶基因,编码 P450 羟化酶的大小一般为 500~550 氨基酸残基.根据网上公布的黑曲霉 ATCC1015 的 P450 基因序列^[23](http://p450.riceblast.snu.ac.kr),筛选出编码大小为 500~550 个氨基酸的候选 P450 基因,确定其开放阅读框架(ORF),设计能够特异性扩增 200~300 bp DNA 片段的荧光定量PCR 引物见表 1.

Tab. 1 Primers							
基因编号	引物序列	退火温度/℃					
AnA010-F	TGGTATGGCAAGAAGGCTG	62					
AnA010-R	ACAGGAAGGTGAAGACGGTC	58					
AnA041-F	CAACGCTTTCTCTTTCAGCA	58					
AnA041-R	GCCATTGACAGGGACAACT	58					
AnA083-F	AAGTGATGATACCGCTCGG	58					
AnA083-R	TGCTCCTGTGAAGGCTGTT	58					
AnA084-F	CTTGCTGGACCTGCTCATT	58					
AnA084-R	TTCAACCGAAGGCTCTCCT	58					
AnA100-F	GTCCACTGGTTCTTGTCGTC	62					
A = A 100 D	CGTGAGGAGATTA-	60					
AnA100-K	GATGTCGTG						
AnA104-F	ACGGTAAGAAGGCGAGTGA	58					
AnA104-R	ATCCTGAGAGGCGAACAAA	56					
AnA139-F	CCTTATTGATTTGCTTGCCC	58					
AnA139-R	CTTCTTGTTGTAACCGCAGG	60					
AnA154-F	TGGAACTACGAATGGTATCCG	58					
AnA154-R	TACGGCAAGTGCTTCACCT	58					

表1 引物 Fab.1 Primer

PCR 扩增反应总体系 20 µL: 2×ES *Taq* Master Mix 10 µL,上、下游引物各 1 µL, cDNA 1 µL, 双蒸 水 7 µL. 反应条件: 95 ℃ 10 min; 95 ℃ 30 s, 56 ℃ 30 s, 72 ℃ 30 s, 25 个循环; 72 ℃ 10 min. 找出在诱 导和非诱导条件下以 cDNA 为模板扩增出亮度有差 异的基因.

将筛选出诱导和非诱导条件下有差异性的基因 进行 Real-time PCR.反应总体系 20 µL:2×SYBR Green Mix 10 µL,上、下游引物各 1 µL, cDNA 2 µL, 双蒸水 6 µL.反应条件:95 °C 10 min;95 °C 45 s, 56 °C 45 s, 72 °C 30 s, 40 个循环. cDNA (0 h)代表非 诱导条件下的模板, cDNA (6 h)代表诱导条件下的模 板.在诱导和非诱导条件下 AnA10 基因扩增出 PCR 产物经过琼脂糖凝胶电泳分析,在紫外条件下亮度一 致,认为 AnA10 基因在底物诱导和非诱导都正常表 达的基因,因此 AnA10 基因作为内参基因.每个候 选基因 Real-time PCR 扩增得到 Ct 值. Ct 值为扩增 产物的荧光信号达到设定的阈值时所经过的扩增循 环数.实验重复 3 次取平均值.表达差异倍数按照式 (1)计算.

表达差异倍数=2^{*a-b*} (1) 式中:*a* 为未诱导的 *Ct* 值,*b* 为诱导 6 h 的 *Ct* 值.

1.7 AnA100和 AnA154 基因的克隆

设计候选基因 AnA100 号的上、下游引物为 AnA100-F-*Kpn* I: 5'-GGTACCATGGCAGTCATCCT TGAGGT-3', AnA100-R-*Xba* I: 5'-TCTAGATCAT GACAGATCAACCTCAACCTCTGGC-3'. 候选基因 AnA154 号基因的上、下游引物为 AnA154-F-*Kpn* I: 5'-GGTACCATGTGGTCACTTTTCACAAT-3', AnA 154-R-*Xba* I: 5'-TCTAGACTAATCGGTGGCCGGCAC CT-3'. 以 1.5 节方法诱导条件下合成的 cDNA 为模板 进行扩增. PCR 扩增程序: 95 ℃ 5 min; 94 ℃ 45 s, 58 ℃ 45 s, 72 ℃ 90 s, 30 个循环; 72 ℃ 10 min. PCR 产物经电泳分析, 胶回收后 4 ℃保存备用.

1.8 重组酿酒酵母菌的获得及活性检测

将带有 Kpn I /Xba I 黏性末端的 AnA100 基因 片段和 AnA154 基因片段分别与酿酒酵母表达载体 pYES2 按 3:1 比例混合后,添加 Solution I,16 ℃ 过夜连接,连接产物转化大肠杆菌 JM109 感受态细 胞后,涂布于含 50 µg/mL 氨苄青霉素的 LB 平板, 37 ℃倒置培养 10 h,挑取单菌落于 LB 平板上密集划 线,37 ℃过夜培养. 接种环刮取菌体,碱裂解法提取 质粒. 重组质粒经酶切验证正确后,送公司测序分 析. 得到的重组质粒命名为 pYES2-AnA100 和 pYES2-AnA154.

重组质粒 pYES2-AnA100 和 pYES2-AnA154 分 别化转酿酒酵母双倍体 INVSc1,涂布于固体 SC 培 养基上,30℃培养至单菌落出现.将长势好的单菌落 挑到 YPD 平板上,30℃培养 2~3 d. 石英砂振荡法 提取转化子基因组,PCR 扩增验证.

将 PCR 验证正确的重组酿酒酵母 pYES2-AnA100、重组酿酒酵母 pYES2-AnA154 和野生型酿 酒酵母转化子分别接种于含有 50 mL YPD 液体培养 基的三角瓶中, 30 ℃、180 r/min 摇床培养 16 h. 加人 2% 半乳糖作为诱导剂,诱导 6 h 后按 0.1% 的量投入 16α, 17α-环氧黄体酮, 30 ℃摇床转化 36 h 后取样, 按照 1.3.1 和 1.3.2 节的方法处理样品,进行硅胶薄层 层析和高效层析色谱分析.

2 结果与分析

2.1 黑曲霉转化产物的分析

2.1.1 TLC 分析

黑曲霉 ATCC1015 转化 16α, 17α-环氧黄体酮 的产物在 TLC 板上和 11α-羟基-16α, 17α-环氧黄体 酮产物标准品位置相同, 初步判断产物为 11α-羟基-16α, 17α-环氧黄体酮(图 1).

1.16α,17α-环氧黄体酮;2.11α-羟基-16α,17α-环氧黄体酮;

- 3. 黑曲霉 + 0.1% 16α, 17α-环氧黄体酮
 - 图 1 黑曲霉 ATCC1015转化 16a, 17a-环氧黄体酮 的 TLC分析
 - Fig. 1 TLC analysis of 16α, 17α-epoxy progesterone transformation caused by *Aspergillus niger* ATCC1015

2.1.2 HPLC 分析

通过 HPLC 分析(图 2),16α,17α-环氧黄体酮 和 11α-羟基-16α,17α-环氧黄体酮标准品保留时间 分别为 7.43、4.36 min(见图 2 a). 黑曲霉转化产物的 液相发现有两种主要物质. 峰 3 为副产物,峰 4 为目 标转化产物,其保留时间为 4.35 min,与 11α-羟基-16α,17α-环氧黄体酮标准品保留时间一致,初步确 定该产物为 11α-羟基-16α,17α-环氧黄体酮.

a. 16α , 17α -环氧黄体酮和 11α -羟基– 16α , 17α -环氧黄体酮标 准品; b. 黑曲霉 ATCC1015 转化 16α , 17α -环氧黄体酮的底物 和产物

图 2 黑曲霉 ATCC1015 转化产物的 HPLC 分析

Fig. 2 HPLC of transformation products caused by Aspergillus niger ATCC1015

2.1.3 核磁鉴定

黑曲霉 ATCC1015 转化为 11 α-羟基-16 α, 17 α-环氧黄体酮的核磁鉴定结果: ¹H NMR [400 MHz, 21 ℃, δ]: 5.60(s, 1H, C-4H), 4.36(d, 1H, *J* = 6.8, OH), 3.86(s, 1H, 11β-H). ¹³C NMR [100 MHz, 25 ℃, δ]: 205.1 (C-20), 199.1 (C-3), 171.7 (C-5), 124.1 (C-4), 70.3 (C-17), 67.2 (C-11), 60.9 (C-16), 59.2 (C-9), 44.6 (C-13), 43.2 (C-12), 41.6 (C-14), 40.6 (C-10), 37.2 (C-8), 34.3 (C-1), 33.2 (C-15), 32.5 (C-2), 31.6 (C-6), 27.1 (C-7), 26.2 (C-21), 18.4 (C-19), 16.4 (C-18).

黑曲霉 ATCC1015 转化产物和 11α-羟基–16α, 17α-环氧黄体酮标准品的氢谱、碳谱完全匹配,确定 此产物为 11α-羟基–16α, 17α-环氧黄体酮.

2.2 黑曲霉 ATCC1015 11 α-羟化酶诱导实验

黑曲霉对 16α, 17α-环氧黄体酮的 11α-羟化活 性诱导的TLC 分析如图 3 所示. 在黑曲霉转化 16α, 17α-环氧黄体酮时, 经过 0.1% 16α, 17α-环氧黄体 酮诱导的 3 号样品将 16α, 17α-环氧黄体酮转化成 11α-羟基-16α, 17α-环氧黄体酮,同时加入 16α, 17α-环氧黄体酮底物 (0.1%) 和放线菌酮的 4 号样品 没有产物 11α-羟基-16α, 17α-环氧黄体酮的生成, 说明经过 16α, 17α-环氧黄体酮诱导的黑曲霉可以在 16α, 17α-环氧黄体酮的 C11 位的α位引入羟基, 而 未经诱导的黑曲霉则没有这种羟化能力. 因此证明 黑曲霉 11α-羟化酶是经过诱导合成的.

1. 16α,17α-环氧黄体酮标准品; 2. 11α-羟基-16α,17α-环氧黄 体酮标准品; 3. 黑曲霉 + 0.1% 16α,17α-环氧黄体酮; 4. 黑曲 霉 + 0.1% 16α,17α-环氧黄体酮 + 放线菌酮

- 图 3 黑曲霉 11α-羟基-16α, 17α-环氧黄体酮 11α-羟化活性诱导的 TLC分析
- Fig. 3 TLC induction of 11α -hydroxylation activities by of 16α , 17α -epoxy progesterone transformation caused by *Aspergillus niger* ATCC1015
- 2.3 黑曲霉 ATCC1015 总 RNA 的提取、cDNA 的 合成

总 RNA 样品的 28S rRNA 和 18S rRNA 条带明 亮、较清晰, 且28S rRNA 的亮度约是 18S rRNA 的 2 倍, 证明提取的RNA质量较好, 再进行cDNA的合成.

2.4 黑曲霉 ATCC1015 菌株 P450 基因数据库的分 析及 Real-time PCR

通过 1.6 节中的方法选择了 57 个编码 P450 基 因的候选 CYP 基因,对这 57 个候选基因设计特异性 引物进行 PCR 扩增,找出在诱导和非诱导条件下 PCR 产物呈现明显差异的目标基因. 候选 P450 基因 荧光定量扩增结果见表 2. 结果表明有 7 个基因在诱 导条件下明显增加. 内参基因 AnA10 的 Ct 值相差不 大,表明两种条件下的 cDNA 模板量没有显著差 别. 7 个候选基因的表达差异显示 AnA100 基因表达 差异倍数为 76.63, AnA154 基因的表达差异倍数为 50.56. 提示 AnA100 和 AnA154 基因为候选甾体 11α-羟化酶目标候选基因.

	表 2	候选 P450基因荧光定量扩增结果
Tab. 2	Quantit	ative Real-time PCR of candidate P450 gene

	基因编号 -	Ct 值		丰十天日位料
		未诱导	诱导 6 h	衣込左开信奴
	AnA10	23.18	23.26	1.01
	AnA41	25.30	26.76	3.20
	AnA83	23.46	25.86	5.28
	AnA84	26.07	24.21	3.63
	AnA100	26.74	20.48	76.63
	AnA104	24.69	26.51	3.53
	AnA139	25.16	26.78	3.07
	AnA154	26.11	20.45	50.56

2.5 AnA100和 AnA154 基因的克隆

以诱导条件下的 cDNA 为模板,分别 PCR 扩增

AnA100和AnA154基因,电泳分析扩增产物,结果如图4所示. PCR产物条带清晰单一旦大小符合预期.

M. 1 kbp DNA ladder; 1. 候选基因 (AnA100) PCR 产物; 2. 候选基因 (AnA154) PCR 产物

图 4 候选基因 (AnA100) 和 (AnA154) PCR 产物电泳图 Fig. 4 Amplification of candidate genes (AnA100 and AnA154) by PCR

2.6 重组酿酒酵母菌株的构建

重组质粒示意图如 5 所示,质粒经 Kpn I、 Kpn I /Xba I 酶切后,琼脂糖凝胶电泳结果如图 6 所示.

- 图 5 重组质粒 PYES2-AnA100和 PYES2-AnA154构建 示意图
- Fig. 5 Construction diagram of the recombinant plasmid PYES2-AnA100 and PYES2-AnA154

M. 1 kbp DNA ladder; 1. 重组质粒 pYES2-AnA100/Kpn I 单酶 切验证; 2. 重组质粒 pYES2-AnA100/Xba I +Kpn I 酶切验证;
3. 重组质粒 pYES2-AnA154/Kpn I 单酶切验证; 4. 重组质粒 pYES2-AnA154/Xba I + Kpn I 酶切验证

- 图 6 重组质粒 pYES2-AnA100 和 pYES2-AnA154 的酶 切验证
- Fig. 6 Restriction analysis of the recombinant plasmid pYES2-AnA100 and pYES2-AnA154

双酶切质粒可见约 6 000 bp 大小的载体片段和 1 500 bp 大小的目的基因片段,说明载体构建成功. 采用化转的方法将 pYES2-AnA100 和 pYES2-AnA154 表达载体分别转入酿酒酵母双倍体感受态 细胞.在 SC 平板上筛选转化子,然后提取基因组, 用 1.7 中的引物扩增目的基因,琼脂糖凝胶电泳结果 如图 7 所示,可见 AnA100 基因和 AnA154 基因已转 入酿酒酵母中,即重组菌株构建成功.

M.1 kbp DNA ladder; 1. 酿酒酵母双倍体 pYES2-AnA100 转化子 PCR 结果; 2. 酿酒酵母双倍体 pYES2-AnA154 转化子 PCR 结果

- 图 7 酿酒酵母双倍体 pYES2-AnA100 和 pYES2-AnA154转化子 PCR产物电泳图
- Fig. 7 PCR results of *S. cerevisiae* pYES2-AnA100 and pYES2-AnA154 transformants

2.7 重组酿酒酵母菌活性的检测

按照方法 1.3.1 处理样品,进行 TLC 分析,结果 如图 8 所示.

1. 16α,17α-环氧黄体酮; 2. 酿酒酵母 Invsc1 转化 16α,17α-环 氧黄体酮; 3. 酿酒酵母双倍体 pYES2-AnA154 转化 16α,17α-环氧黄体酮; 4. 酿酒酵母双倍体 pYES2-AnA100 转化 16α, 17α-环氧黄体酮; 5. 11α-羟基-16α,17α-环氧黄体酮

- 图 8 酿酒酵母 pYES2-AnA154 和酿酒酵母 pYES2-AnA100 转化 16*a*, 17*a*-环氧黄体酮 TLC分析
- Fig. 8 TLC of 16α, 17α-epoxy progesterone transformation caused by *S. cerevisiae* pYES2-AnA154 strains and *S. cerevisiae* pYES2-AnA100

对照组酿酒酵母双倍体野生型没有将 16α , 17α -环氧黄体酮转化, 重组酿酒酵母 pYE2-AnA154 没有 将 16α , 17α -环氧黄体酮转化, 说明 AnA154 基因没 有羟基化活性. 重组酿酒酵母 pYES2-AnA100 将 16α, 17α-环氧黄体酮转化, 其产物和 11α-羟基-16α, 17α-环氧黄体酮在同一水平线上, 初步确定酿 酒酵母可以表达黑曲霉 11α-羟化酶基因.

按照方法 1.3.2 处理样品,进行 HPLC 分析,如 图 9 所示. 16α, 17α-环氧黄体酮和 11α-羟基-16α, 17α-环氧黄体酮保留时间分别为 7.43、4.35 min. 对 照组酿酒酵母 INVSc1 没有将 16α, 17α-环氧黄体酮 底物转化成为其他产物. 重组酿酒酵母 pYES2-AnA100 转化产物中有一个产物的保留时间为 4.35 min,与标准品 11α-羟基-16α, 17α-环氧黄体酮 的保留时间一致. 因此,确定黑曲霉 AnA100 号基因 在酿酒酵母双倍体中具有 11α-羟化酶活性,也说明 AnA100 为黑曲霉 11α-羟化酶基因,同时证明了酿 酒酵母表达平台可以用于黑曲霉 11α-羟化酶基因的 鉴定.

a. 16α , 17α —环氧黄体酮标准品和 11α —羟基— 16α , 17α —环氧黄体酮产 物标准品; b. 酿酒酵母转化 16α , 17α —环氧黄体酮; c. 酿酒酵母 pYES2-AnA100转化 16α , 17α —环氧黄体酮

- 图 9 酿酒酵母 pYES2-AnA100转化 16a, 17a-环氧黄 体酮 HPLC分析
- Fig. 9 HPLC of 16α, 17α-epoxy progesterone transformation caused by *S. erevisiae* pYES2-AnA100 strains

3 结 论

黑曲霉 ATCC1015 对 16α , 17α -环氧黄体酮具 有特异的转化活性.通过 TLC、HPLC 分析、¹H NMR、¹³C NMR 分析,转化产物鉴定为 11α -羟基– 16α , 17α -环氧黄体酮.确定了黑曲霉 ATCC1015 的 甾体羟化酶活性的表达受甾体底物诱导.鉴于真菌 的甾体羟化酶属于细胞色素 P450 酶,通过荧光定量 确定了 AnA100 和 AnA154 基因的表达受甾体底物 的高度诱导,提示 AnA100 和 AnA154 为目标甾体 11α -羟化酶的候选基因.构建目标基因表达载体,借 助酿酒酵母功能表达筛选平台进行验证,从而确定 AnA100 为黑曲霉甾体羟化酶基因,从而为黑曲霉菌 株的定向改造奠定了基础.

参考文献:

- [1] 翁玲玲,楼荣良. 国外正在研制的甾体药物[J]. 中国 药学杂志,1994,29(3):174-176.
- [2] 韩广甸,韩卫亚.关于我国皮质激素药物的发展策略 [J].中国医药工业杂志,1997,28(12):559-562.
- [3] 王普,陈希杨,虞炳钧,等.新技术在甾体药物微生物 转化中的应用[J].化工进展,2002,22(11):805-808.
- [4] 王敏. 新月弯孢霉的甾体 11β-羟基化作用研究[D].天津:天津科技大学,2001.
- [5] 徐玉华,唐璐敏. 微生物甾体 C₁₁ 羟化反应的研究现状 [J]. 发酵科技通讯,2014,43(4):30-34.
- [6] 张丽青. 微生物转化在甾体药物合成中的应用[J]. 医药工业, 1985, 16(1): 37-41.
- [7] 龙尾,申雁冰,马冰,等. 赭曲霉对 16α,17α-环氧黄体
 酮的 C₁₁α-羟基化工艺研究[J]. 化学与生物工程, 2010,27(8):44-47.
- [8] 葛枳江,毛淑红,李宴清,等. 黑曲霉催化雄甾-4-烯-3,17-二酮 16β-羟基化[J]. 生物育种与工艺优化, 2014,30(9):1481-1485.
- [9] Donova M V, Egorova O V. Microbial steroid transformations: Current state and prospects [J]. Applied Microbiology & Biotechnology, 2012, 94 (6): 1423–1447.
- [10] 徐玉华,唐璐敏. 微生物甾体 C11 羟化反应的研究现 状[J]. 发酵科技通讯,2014,43(4):30-34.
- [11] Klingenberg M. Pigments of rat liver microsomes[J]. Archives of Biochemistry Biophysics, 1958, 75(2): 376–386.
- [12] Frank H, Andreas B, Ewen K M, et al. Cytochrome 450 systems-biological variations of electron transport chains
 [J]. Biochimica et Biophysica Acta, 2007, 1770(3): 330–344.

- [13] 唐振华,胡刚. 细胞色素 P450 基因的命名及其基因表达的调控[J]. 昆虫知识, 1993, 30(5): 311-314.
- [14] Ornura T, Sato R. A new cytochrome in liver microsomes[J]. Journal of Biological Chemistry, 1961, 237: 1375–1376.
- [15] Hans M, Brink V D, Robert F M, et al. Review cytochrome P450 enzyme systems in fungi[J]. Fungal Cenetics Biology, 1998, 23 (1): 1–17.
- [16] 郭一平,郑璞. 甾体微生物 C₁₁α-羟化反应的研究进展
 [J]. 浙江工业大学学报,2004,32(4):437-441.
- [17] Kristan K, Rižner T L. Steroid-transforming enzymes in fungi[J]. Journal of Steroid Biochemistry & Molecular Biology, 2012, 129 (1/2): 79–91.
- [18] Chen K C, Wey H C. Dissolution-enzyme kinetics of 11hydroxylation of cortexolone by *Curvularia lunata*[J]. Enzyme and Microbial Technology, 1990, 12 (8): 616– 621.
- [19] Manosroi J, Sripalakit P, Manosroil A. Bioconversion of hydrocortisone to prednisolone by immobilized bacterium cells in a two-liquid-phase system[J]. Journal of Technology and Biotechnology, 1998, 73 (3) : 203–210.
- [20] 卢文玉. 新月弯孢霉甾体 11β-羟基化与细胞色素 P450 酶的研究[D]. 天津:天津科技大学,2004.
- [21] Suzanne L, Robert A, Alan M. Aspergillus ochraceus 11
 alpha hydroxylase and oxidoreductase: USA, 7238507
 B2[P]. 2007–07–03.
- [22] Petric S, Hakki T, Bernhardt R, et al. Discovery of a steroid 11*a*-hydroxylase from *Rhizopus oryzae* and its biotechnological application[J]. Journal of Biotechnology, 2010, 150 (3) : 428–437.
- [23] Moktali V, Park J, Fedorova-Abrams N D, et al. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes[J]. Bmc Genomics, 2012, 13(1):1–13.

责任编辑:郎婧