

钾离子高效吸附剂 H₈ Nb₂₂ O₅₉·8H₂O 的合成及其特性

王 昶1,张相龙2,翟炎龙2,郝庆兰2

(1. 天津科技大学海洋科学与工程学院, 天津 300457; 2. 天津科技大学材料科学与化学工程学院, 天津 300457)

摘 要:用浓度为 10 mol/L HNO₃ 对高温固相合成的 Rb₈Nb₂₂O₅₉进行酸洗脱 Rb⁺,制得吸附剂 H₈Nb₂₂O₅₉·8H₂O,并 对 K⁺的交换性能进行研究,同时运用 XRD 和 SEM 进行表征.结果表明:H₈Nb₂₂O₅₉·8H₂O 与 Rb₈Nb₂₂O₅₉·具有相似的 结构;H₈Nb₂₂O₅₉·8H₂O 对于 Na⁺和 K⁺的饱和吸附量接近理论吸附量 2.55 mmol/g,表明吸附剂对 Na⁺和 K⁺具有较高的 亲和性;在 pH 为 2~8 的范围内,H₈Nb₂₂O₅₉·8H₂O 对 K⁺具有较高的分配系数,而分离因数随 pH 的升高而显著降低; H₈Nb₂₂O₅₉·8H₂O 重复使用后对 K⁺仍具有较高的吸附选择性.

关键词:吸附剂; Rb₈ Nb₂₂ O₅₉; Na⁺; K⁺; 离子交换

中图分类号: TQ13 文献标志码: A 文章编号: 1672-6510(2013)01-0038-04

Synthesis and Properties of H₈Nb₂₂O₅₉·8H₂O as High-efficient Potassium Adsorbent

WANG Chang¹, ZHANG Xianglong², ZHAI Yanlong², HAO Qinglan²

College of Marine Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China;
 College of Material Science and Chemical Engineering, Tianjin University of Science & Technology,

Tianjin 300457, China)

Abstract: The adsorbent $H_8 Nb_{22} O_{59} \cdot 8H_2 O$ was obtained through extracting Rb^+ from $Rb_8 Nb_{22} O_{59}$ in the 10 mol/L HNO₃ solution, the K⁺ exchange capacity of $H_8 Nb_{22} O_{59} \cdot 8H_2 O$ was studied, and samples were characterized with XRD and SEM, respectively. The results indicate that the structure of $H_8 Nb_{22} O_{59} \cdot 8H_2 O$ is similar with that of $Rb_8 Nb_{22} O_{59}$, and the saturated adsorption capacities of Na⁺ and K⁺ for $H_8 Nb_{22} O_{59} \cdot 8H_2 O$ are close to the theoretical value of 2.55 mmol/g, suggesting that the adsorbent $H_8 Nb_{22} O_{59} \cdot 8H_2 O$ has a higher affinity for Na⁺ and K⁺. $H_8 Nb_{22} O_{59} \cdot 8H_2 O$ shows markedly high selectivity for the adsorption of K⁺ within the pH range from 2 to 8, but separation factor decreases with the increase of pH value, and re-used $H_8 Nb_{22} O_{59} \cdot 8H_2 O$ still exhibits markedly high selectivity for the adsorption of K⁺.

Key words: adsorbent; $Rb_8 Nb_{22} O_{59}$; Na^+ ; K^+ ; ion exchange

高纯氯化钠(99.99%)可广泛应用于食品、医药和 医疗等领域.氯化钠主要来源于海水提纯,不可避免 地会引入 K⁺,使其无法达到更高的应用要求.由于 Na⁺、K⁺的性质十分相似,Na⁺、K⁺的分离非常困 难.利用氯化钠和氯化钾在水中溶解度的差异,采用 重结晶法,多次结晶可提高氯化钠的纯度,然而在实 际结晶过程中不可避免地会产生夹带现象,致使制备 的氯化钠纯度很难达到要求,且该工艺能耗高,收率 低.而采用沉淀法、萃取法等方法^[1-3],因选择性不

相比之下,无机离子交换剂具有较好的热稳定 性、可重复利用性和较高的吸附量等特点^[4],特别是 无机离子筛分材料,可有效吸附高浓度离子中存在的 特定离子^[5],受到了人们的广泛关注. Chitrakar 等^[6] 通过酸处理 Li_{1.6} Mn_{1.6} O₄ 获得 MnO₂·0.5H₂O 离子筛 交换剂,该离子筛对锂离子具有较大的吸附量 (5.3 mmol/g),可有效地从海水中提取锂离子. 合成 的锂锰氧化物离子筛对 Li⁺显示了较高的选择性,是

高,分离效果不理想,也难以得到高纯氯化钠.

收稿日期:2012-08-29;修回日期:2012-10-16 基金项目:天津市塘沽科委专项基金(09tgkw-12) 作者简介:王 昶(1958-),男,江苏人,教授,wangc88@163.com.

由于离子筛具有与 Li⁺半径相当的孔径, 只允许小于 Li⁺半径的离子进入, 而大于 Li⁺半径的离子不能够进 入, 从而对 Li⁺具有记忆能力, 对 Li⁺显示了较高的选 择性^[7], 因此, 锂锰氧化物离子筛可广泛用于海水中 Li⁺的提取和 Li⁺的纯化. 然而, 对于 Na⁺、K⁺, 因 Na⁺ 的半径小于 K⁺, 因此不能够采用简单的筛分方法对 K⁺实现分离, 需要合成对 K⁺具有较高选择性的离子 筛, 实现氯化钠溶液中微量 K⁺的去除. 早在 19 世纪 60 年代人们就合成了 Rb₈Nb₂₂O₅₉, 对其结构和理化 参数进行了研究^[8-9]; Yang 等^[10]将其作为离子筛交换 剂使用, 研究了在不同的 pH 范围内, 这种无机材料 吸附剂对不同的碱金属离子具有不同的吸附量, 但没 有对特定离子的分离进行研究.

本研究针对 Na^+ 、 K^+ 的特性,采用高温固相法合成 无机材料 $Rb_8 Nb_{22} O_{59}$,然后酸洗样品 $Rb_8 Nb_{22} O_{59}$, 制得离子筛型吸附剂 $H_8 Nb_{22} O_{59}$ ·8H₂O,分别采用 X 射线衍射仪 (XRD)和扫描电子显微镜 (SEM) 对样品 结构进行表征,并通过离子吸附实验考察 $H_8 Nb_{22} O_{59}$ · 8H₂O 对 Na^+ 和 K^+ 的吸附行为,旨在寻找 Na^+ 、 K^+ 高 效分离的新途径.

1 实 验

1.1 吸附剂制备

Rb₈Nb₂₂O₅₉的制备:将 0.4803g Rb₂CO₃ (99.9%,熔点 723 ℃,成都西亚试剂有限公司)和 1.5204g Nb₂O₅(99.99%,熔点 1520 ℃,成都西亚试 剂有限公司)混合,研磨,然后放入刚玉坩埚中,分别 在 700、800、900、1000、1100、1200 ℃焙烧 8 h.将 不同温度焙烧的样品分别记为T_n(n为焙烧温度数值).

H₈Nb₂₂O₅₉·8H₂O 的制备:依据文献[10]报道, Rb₈Nb₂₂O₅₉ 经酸洗后 H⁺与 Rb⁺置换率在 97%以上, 所以,本实验使用 50 mL 10 mol/L HNO₃处理获得的 样品(0.5 g)3d,然后过滤、水洗至中性,在 70 ℃干燥 获得质子化样品.将酸洗后的样品分别记为 TH_n.

1.2 吸附剂表征

用北京普析公司生产的 XD-3 型 X 射线衍射仪 分析样品的晶态结构,衍射靶为 Cu 靶 $K\alpha$ 射线, λ = 0.154 18 nm,扫描速率为 4°/min,收集 2 θ = 5°~70° 的衍射峰.用日本日立公司生产的 SU-1510 扫描电 子显微镜 (SEM) 观测样品的形貌特征.用北京瑞利 公司生产的 WFX-120 原子吸收光谱仪对不同溶液 中的 Na⁺和 K⁺含量进行分析, Na 灯波长 589.0 nm, K 灯波长 766.5 nm.

1.3 饱和吸附量的测定

用 0.1 mol/L NaCl 和 0.1 mol/L NaOH 以及 0.1 mol/L KCl 和 0.1 mol/L KOH 分别配制混合液 (pH>12.40). 将50 mg 质子化样品添加到 5 mL 上述 混合液中,室温振荡 7 d,吸附后的溶液用 0.1 mol/L HCl 滴定,通过初始混合液的离子浓度和吸附后溶液 离子的浓度的差值可获得 H₈ Nb₂₂ O₅₉·8H₂O 对 Na⁺、 K⁺的吸附量.

Q = (5 c (OH⁻) - 0.1 V_{HCl})/m (1) 式中: Q 为吸附剂的吸附量, mmol/g; V_{HCl} 为滴定所 用 HCl 的体积, mL; c(OH⁻)为碱浓度, mol/L; m 为 吸附剂用量, g.

1.4 分配系数 (K_d) 的测定

将 50 mg 质子化样品添加到 5 mL 不同 pH 的 NaCl 和 KCl($n(Na^+) : n(K^+) = 1$)的混合液中,用 NaOH 和 KOH 替代 NaCl 和 KCl 以此来改变溶液的 pH,室温振荡 2 d,然后采用原子吸收光谱测定溶液 中的离子浓度,用 pH 计测定溶液的 pH,吸附量通过 吸附前后溶液中离子浓度的变化确定. $K_d(mL/g)$ 可 由式(2)计算:

$$K_{\rm d} = rac{被交换的金属离子量(mmol/g)}{平衡时液相中金属离子的浓度(mmol/mL)}$$
(2)

2 结果与讨论

2.1 Rb₈ Nb₂₂ O₅₉和 H₈ Nb₂₂ O₅₉·8 H₂O的表征

图 1 为原料 Rb₂CO₃、Nb₂O₅ 以及以 4:11(物质 的量比)混合的 Rb₂CO₃ 和 Nb₂O₅ 在不同温度下焙烧 样品的 XRD 图谱.

- 图 1 Nb₂O₅、Rb₂CO₃以及不同温度焙烧 8 h 样品 Rb₈Nb₂₂O₅₉的 XRD 图谱
- Fig. 1 XRD patterns of Nb₂O₅, Rb₂CO₃ and Rb₈Nb₂₂O₅₉ at different calcination temperatures for 8 h

由图 1 可知, 经高温焙烧后, Rb₂CO₃ 在 2 θ = 22.50°、24.43°、30.21°、30.62°、31.84°、36.31°、41.16° 和 Nb₂O₅ 在 2 θ = 22.60°、28.31°、28.87°、29.06°、 37.12°、46.06°的特征衍射峰完全消失.与此同时, 样 品 T_n 在 2 θ = 12.33°、14.23°、15.90°、26.51°、26.75°、 27.42°、28.58°、29.35°、30.16°、31.14°、34.47°处显 示了强的特征峰.700℃焙烧的样品峰型较弱, 说明 低温样品结晶度低;随着温度的升高, 衍射峰峰强增 高, 峰形变得尖锐, 结晶度提高.这表明温度对于样 品 Rb₈ Nb₂₂ O₅₉ 的结晶度有较大的影响.

图 2 为 1 200 ℃焙烧 8 h 获得的 Rb₈Nb₂₂O₅₉和 H₈Nb₂₂O₅₉·8H₂O 的XRD 图谱. XRD 图谱分析表明: Rb⁺的浸出,并没有改变衍射峰的位置,也没有产生 新的衍射峰,只是峰强发生了变化. 说明 Rb₈Nb₂₂O₅₉ 结构稳定,经酸处理后生成的 H₈Nb₂₂O₅₉·8H₂O 与 Rb₈Nb₂₂O₅₉ 的结构相似,晶型结构没有发生变化,也 说 明 吸 附 过 程 是 拓 扑 进 行 的 . Rb₈Nb₂₂O₅₉ 和 H₈Nb₂₂O₅₉·8H₂O 的 SEM 图(图 3)也表明 Rb⁺的浸出 没有改变样品的形貌.

(a) Rb₈Nb₂₂O₅₉

(b) H₈Nb₂₂O₅₉·8H₂O

图 3 Rb₈Nb₂₂O₅₉和 H₈Nb₂₂O₅₉·8H₂O 的 SEM 图 Fig. 3 SEM images of the samples Rb₈Nb₂₂O₅₉ and H₈Nb₂₂O₅₉·8H₂O

2.2 饱和吸附量

1 200 ℃焙烧 8 h 的 H₈Nb₂₂O₅₉·8H₂O 样品,对 Na⁺和 K⁺的吸附量分别为 2.60 和 2.55 mmol/g,接近 于由理论模型 $(H_3O)_8Nb_{22}O_{59}$ 计算获得的理论吸附 量^[10]2.55 mmol/g. 这表明 Rb⁺可被有效浸出,吸附剂 $H_8Nb_{22}O_{59}$ ·8H₂O 对 Na⁺和 K⁺具有较高的亲和性.

2.3 分配系数

饱和吸附量的数值大小无法表征 H₈Nb₂₂O₅₉·8H₂O 对 Na⁺和 K⁺的竞争吸附.为了避免嵌入离子之间的 相互作用,用 NaCl 和 KCl 溶液配制 Na⁺和 K⁺浓度低 于12 mmol/L 的混合液($n(Na^+):n(K^+)=1$),pH 的 调节通过 NaOH 和 KOH 代替 NaCl 和 KCl 来实现, K_d 是在较低的 Na⁺和 K⁺浓度下获得的,因此, K_d 值 的大小可以反映离子和吸附位的本征亲和性, K_d 值 可用于估计无机离子吸附剂的离子筛性质,将不同焙 烧温度获得的 H₈Nb₂₂O₅₉·8H₂O 样品添加到上述混合 液中获得 Na⁺和 K⁺分配系数见表 1.

表	1	样品	H ₈ N	b22O59	8H ₂ O 对I	Na ⁺ 和I	K⁺的分	配系	数 (<i>K</i> _d)
	Та	b. 1	Na ⁺	and K ⁺	distribu	tion co	oefficie	nt K _d	for

样旦	溶液	分配系数(K_d)/(mL·g ⁻¹)		分离因	吸附后溶	
行十日日		Na ⁺	\mathbf{K}^{+}	数(<i>α</i>)	液 pH	
TH 800	А	140	4 170	30	2.63	
TH_{1000}	А	170	9 580	56	2.50	
TH 1100	А	120	6 4 5 0	54	2.72	
TH 1200	А	200	7 790	39	2.21	
TH 800	В	200	1 700	8	6.89	
TH 1000	В	170	2 260	13	7.20	
TH 1100	В	160	1 600	10	7.75	
TH 1200	В	180	4 270	24	6.03	

注:溶液 A 中 NaOH 和 KOH 的初始浓度为 6.5 mmol/L; 溶液 B 中 NaOH 和 KOH 的初始浓度为 9.5 mmol/L.

由表 1 可知,在 pH 为 2~8 的范围内, K^{+} 的分配 系数要远远大于 Na^+ 的,质子化样品 $H_8Nb_{22}O_{59}$ ·8H₂O 对 K⁺显示了高的选择性, 且与温度无关. 为了更好 地表征 H₈Nb₂₂O₅₉·8H₂O 对 Na⁺和 K⁺的分离效果,将 K^{+} 和 Na⁺分配系数的比值定义为分离因数 α . 分离因 数越大,吸附剂 $H_8Nb_{22}O_{59}$ ·8H₂O 对 K⁺的选择性越 高. 结合 XRD 表征结果, H₈Nb₂₂O₅₉·8H₂O 的结晶度 随焙烧温度的增加而增强,说明 H₈Nb₂₂O₅₉·8H₂O 的 选择性与其结晶度有关,结晶度增强,有利于 K⁺的吸 附. 与分配系数不同, 与低 pH 条件下的分离因数 α 相比,在较高pH时,分离因数有显著的降低.离子筛 $H_8Nb_{22}O_{59}$ ·8H₂O 对 K⁺显示了较高的选择性,这可能 是由于离子筛H₈Nb₂₂O₅₉·8H₂O 具有与K⁺离子半径相 当的孔径,K⁺可被有效固定,Na⁺可以自由移动,而不 能够被稳定固定^[11],因此,离子筛 H₈Nb₂₂O₅₉·8H₂O 对 K⁺显示了较高的选择性.

2.4 收附剂 H₈Nb₂₂O₅₉·8H₂O 对 K⁺交换平衡时间

50 mg 吸附剂 H₈Nb₂₂O₅₉·8H₂O 在 5 mL 含有 1 mmol/L K⁺的 0.1 mol/L NaCl 溶液中对 K⁺吸附平衡 曲线如图 4 所示.

由图4可知,在吸附初始阶段,吸附剂 $H_8Nb_{22}O_{59}\cdot 8H_2O$ 对 K^+ 显示了较高的吸附量,说明吸 附剂在吸附初始阶段对 K^+ 显示了较高的选择性.随 着时间的延长,溶液中 K^+ 的含量持续降低,去除率增 大,约 48 h 溶液中 K^+ 含量就趋于平衡,而时间的延 长,对于 K^+ 的去除没有太大的影响.

2.5 吸附剂 H₈Nb₂₂O₅₉·8H₂O 重复使用性

回收使用后的吸附剂, 经 10 mol/L HNO₃ 溶液处 理 3 d, 然后过滤、水洗至中性, 在 70 °C干燥. 在含有 1 mmol/L K⁺的 0.1 mol/L NaCl 溶液中重复使用, 结 果见表 2. 由表 2 可知, 吸附剂 H₈Nb₂₂O₅₉·8H₂O 经 3 次循环使用, 对 K⁺仍具有较高的选择性, 去除率为 89%, 这表明了 K⁺和 Na⁺的嵌入和浸出过程中并没有 破坏吸附剂 H₈Nb₂₂O₅₉·8H₂O 的结构, 因此吸附剂 H₈Nb₂₂O₅₉·8H₂O 对 K⁺保持了较高的选择性. 可见, 吸附剂 H₈Nb₂₂O₅₉·8H₂O 具有较好的应用前景.

表 2 吸附剂 H₈Nb₂₂O₅₉·8H₂O 重复使用对 K⁺去除率的 影响

Tab. 2 Effect of recycling times of the adsorbent H Nh O and the number of K^+

$H_8 N D_{22} O_{59} H_2 O O I THE TEHLOVALOF K$							
がた米石	初始溶液 K ⁺	吸附后溶液 K⁺	V ⁺ 土 吟 索 //				
代致	浓度/(mmol·L ⁻¹)	浓度/(mmol·L ⁻¹)	K 云际平/%				
1	1	0.12	88				
2	1	0.07	93				
3	1	0.11	89				

2.6 微量 K⁺的去除

表 3 为不同浓度氯化钠对微量 K⁺去除率的影响. 由表可知,在较低浓度的氯化钠溶液中,吸附剂 H₈Nb₂₂O₅₉·8H₂O 对 K⁺具有较高的去除率,随着氯化

钠溶液浓度的升高, 钾离子的去除率显著降低, 进而 变化不大. 在含有 0.94 mmol/L KCl 的 50 mmol/L NaCl 溶液中, K⁺去除率为 91.5%, 然而, 在含有 0.095 mmol/L KCl 的 1 000 mmol/L NaCl 溶液中, K⁺ 的去除率仅为 47.4%, 去除率显著降低. 这一结果表 明, 高浓度的氯化钠对微量 K⁺的去除有显著影响, 吸 附剂 H₈Nb₂₂O₅₉·8H₂O 对 K⁺具有较高的选择性.

表 3 不同浓度氯化钠对微量 K⁺去除率的影响 Tab. 3 Effect of different kinds of sodium chloride solutions on the removal of minor amounts K⁺

Na⁺浓度/	初始溶液 K⁺	吸附后溶液 K⁺	K⁺去	mII
$(mmol \cdot L^{-1})$	浓度/(mmol·L ⁻¹)	浓度/(mmol·L ⁻¹)	除率/%	рп
50	0.94	0.08	91.5	2.02
500	0.94	0.32	66.0	1.89
1 000	0.92	0.38	58.7	1.77
1 000	0.46	0.24	47.8	1.82
1 000	0.095	0.05	47.4	1.76

注: 吸附剂添加量 50 mg; 混合液 5 mL.

3 结 论

(1)以 Rb₂CO₃ 和 Nb₂O₅ 为原料,采用高温固相 法合成了 Rb₈Nb₂₂O₅₉,酸洗后得到对钾离子具有较高 选择性的吸附剂 H₈Nb₂₂O₅₉·8H₂O,其晶型与 Rb₈Nb₂₂O₅₉相同.

(2) 焙烧温度对吸附剂 H₈Nb₂₂O₅₉·8H₂O 结晶度 影响较大, 在较高温焙烧其结晶度较高. 当 pH 在 2~8 的范围内, H₈Nb₂₂O₅₉·8H₂O 对钾离子具有较高 的分配系数(*K*_d), 分离因数(*a*) 随着焙烧温度的升高 而增大, 与 pH 的变化相反.

(3)吸附剂 H₈Nb₂₂O₅₉·8H₂O 对高浓度氯化钠溶 液中的微量钾离子具有较高的选择性,因此,可用于 钠溶液的提纯.

参考文献:

- [1] Kielland J. Process for the recovery of potassium salts from solutions: DE, 691366[P]. 1940–05–24.
- Yasuyuki T, Aiko Y. Extraction of sodium and potassium perchlorates with benzo-18-crown-6 into various organic solvents: Quantitative elucidation of anion effects on the extraction-ability and -selectivity for Na⁺ and K⁺ [J]. Talanta, 2002, 56 (3): 505–513.
- [3] Kamatsu M. Potassium-selective adsorbent and its production: JP, 03-205315[P]. 1991–09–06.

(下转第46页)